Algorithm for Global Optimization Inspired by Collective Animal Behavior
A metaheuristic algorithm for global optimization called the collective animal behavior (CAB) is introduced. Animal groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central locations, or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency, to follow better migration routes, to improve their aerodynamic, and to avoid predation. In the proposed algorithm, the searcher agents emulate a group of animals which interact with each other based on the biological laws of collective motion. The proposed method has been compared to other well-known optimization algorithms. The results show good performance of the proposed method when searching for a global optimum of several benchmark functions.
The algorithm was published in:
http://www.hindawi.com/journals/ddns/2012/638275/
The files contain a main program CAB.m and two auxiliary functions.
Cita come
Erik (2025). Algorithm for Global Optimization Inspired by Collective Animal Behavior (https://it.mathworks.com/matlabcentral/fileexchange/46771-algorithm-for-global-optimization-inspired-by-collective-animal-behavior), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- Mathematics and Optimization > Global Optimization Toolbox > Genetic Algorithm >
- Sciences > Food Sciences >
- Sciences > Agriculture >
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
