Chaos theory and meta-heuristics
You can simply use any of these chaotic maps when you need a random number in [0 1] in your meta-heuristic. The maps are:
Chebyshev map
Circle map
Gauss/mouse map
Iterative map
Logistic map
Piecewise map
Sine map
Singer map
Sinusoidal map
Tent map
Details can be found in the following reference:
S. Saremi, S. Mirjalili, A. Lewis, Biogeography-based optimisation with chaos, Neural Computing and Applications, In press, 2014, Springer,
You can download the paper here: http://dx.doi.org/10.1007/s00521-014-1597-x
*********************************************************************************************************************************************
A course on “Optimization Problems and Algorithms: how to understand, formulation, and solve optimization problems”:
https://www.udemy.com/optimisation/?couponCode=MATHWORKSREF
A course on “Introduction to Genetic Algorithms: Theory and Applications”
https://www.udemy.com/geneticalgorithm/?couponCode=MATHWORKSREF
*********************************************************************************************************************************************
Cita come
Seyedali Mirjalili (2024). Chaos theory and meta-heuristics (https://www.mathworks.com/matlabcentral/fileexchange/47215-chaos-theory-and-meta-heuristics), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Riconoscimenti
Ispirato: Ulmann-Victor_Attractor, A-Novel-Bio-Inspired-Python-Snake-Optimization-Algorithm
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.