Least Mean Square for System Identification

Least Mean Square (LMS) used for system identification.
610 download
Aggiornato 10 set 2014

Visualizza la licenza

Least mean squares (LMS) algorithms are a class of adaptive filter used to mimic a desired filter by finding the filter coefficients that relate to producing the least mean squares of the error signal (difference between the desired and the actual signal).
The weights update Formula for every Iteration is Wt new=Wt old + mu * error *input;
For Example:
inp=wavread('BlueFunk-bass1.wav');
inp=inp-(min(inp)); % required for audio signals
h=[1 -4 6 -5 2]; % Known System papametes for a low Pass filter h
Iter=lms(inp,h,100,5,1);

Author:Santhana Raj.A https://sites.google.com/site/santhanarajarunachalam/

Cita come

Santhana Raj (2025). Least Mean Square for System Identification (https://it.mathworks.com/matlabcentral/fileexchange/47790-least-mean-square-for-system-identification), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2012a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Linear Model Identification in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0.0