Monomial to Chebyshev basis
A = MON2CHEB(B) converts polynomial B given in monomial basis to
Chebyshev basis A. The polynomial must be given with its coefficients
in descending order, i.e. B = B_N*x^N + ... + B_1*x + B_0
Example:
Suppose we have a polynomial in the monomial basis:
b2*x^2 + b1*x + b0,
with b2=2, b1=0, b0=-2 for example.
We want to express the polynomial in the Chebyshev base
{T_0(x),T_1(x),T_2(x)}, where T_0=1, T_1=x, T_2=2x^2-1, i.e.
a2*T_2(x) + a1*T_1(x) + a0*T_0(x) = b2*x^2 + b1*x + b0,
where a = [a2 a1 a0] is sought.
Solution:
b = [2 0 -2];
a = mon2cheb(b);
Cita come
Zoltán Csáti (2024). Monomial to Chebyshev basis (https://www.mathworks.com/matlabcentral/fileexchange/50353-monomial-to-chebyshev-basis), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.