Newton's Method
This function can be used to perform Newton-Raphson method to detect the root of a polynomial. It starts from an initial guess by user and iterates until satisfy the required convergence criterion.
It should be noted that the “root” function in the MATLAB library can find all the roots of a polynomial with arbitrary order. But this method, gives the one the roots based on the initial guess and it gives the number of iteration required to converge.
% Example:
% f(x)=(x^3)-6(X^2)-72(x)-27=0
% therefore
% vector=[1 -6 -72 -27]
% initial=300;
% tolerance=10^-2;
% maxiteration=10^4;
% [root,number_of_iteration] = newton(vector,initial,tolerance,maxiteration)
% or
% [root,number_of_iteration] = newton([1 -6 -72 -27],300,10^-2,10^4)
% root=
% 12.1229
% number_of_iteration=
% 13
% This means that the detected root based on the initial
% guess (300) is 12.1229 and it converges after 13 iterations.
Cita come
Farhad Sedaghati (2024). Newton's Method (https://www.mathworks.com/matlabcentral/fileexchange/52362-newton-s-method), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- MATLAB > Mathematics > Elementary Math > Polynomials >
Tag
Riconoscimenti
Ispirato: newtonraphson
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Newton's Method to find the roots of a polynomail/
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0.0 |
Updated description
|