Newton's Method

Newton's Method to find the roots of a polynomial
2,8K download
Aggiornato 3 ago 2015

Visualizza la licenza

This function can be used to perform Newton-Raphson method to detect the root of a polynomial. It starts from an initial guess by user and iterates until satisfy the required convergence criterion.
It should be noted that the “root” function in the MATLAB library can find all the roots of a polynomial with arbitrary order. But this method, gives the one the roots based on the initial guess and it gives the number of iteration required to converge.
% Example:
% f(x)=(x^3)-6(X^2)-72(x)-27=0
% therefore
% vector=[1 -6 -72 -27]
% initial=300;
% tolerance=10^-2;
% maxiteration=10^4;
% [root,number_of_iteration] = newton(vector,initial,tolerance,maxiteration)
% or
% [root,number_of_iteration] = newton([1 -6 -72 -27],300,10^-2,10^4)
% root=
% 12.1229
% number_of_iteration=
% 13
% This means that the detected root based on the initial
% guess (300) is 12.1229 and it converges after 13 iterations.

Cita come

Farhad Sedaghati (2024). Newton's Method (https://www.mathworks.com/matlabcentral/fileexchange/52362-newton-s-method), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2013a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Polynomials in Help Center e MATLAB Answers
Riconoscimenti

Ispirato: newtonraphson

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Newton's Method to find the roots of a polynomail/

Versione Pubblicato Note della release
1.0.0.0

Updated description
Updated description