Dimensionality Reduction using Generalized Discriminant Analysis (GDA)
GDA is one of dimensionality reduction techniques, which projects a data matrix from a high-dimensional space into a low-dimensional space by maximizing the ratio of between-class scatter to within-class scatter.
More details can be found in Section 4.3 of:
M. Haghighat, S. Zonouz, M. Abdel-Mottaleb, "CloudID: Trustworthy cloud-based and cross-enterprise biometric identification," Expert Systems with Applications, vol. 42, no. 21, pp. 7905-7916, 2015.
http://dx.doi.org/10.1016/j.eswa.2015.06.025
(C) Mohammad Haghighat, University of Miami
haghighat@ieee.org
PLEASE CITE THE ABOVE PAPER IF YOU USE THIS CODE.
Cita come
Mohammad Haghighat (2025). Dimensionality Reduction using Generalized Discriminant Analysis (GDA) (https://github.com/mhaghighat/gda), GitHub. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Riconoscimenti
Ispirato da: Gabor Feature Extraction
Ispirato: Gabor Wavelets, Feature fusion using Canonical Correlation Analysis (CCA), Feature fusion using Discriminant Correlation Analysis (DCA)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0.0.0 |
|
