k-means, mean-shift and normalized-cut segmentation

Versione 1.0.0.0 (25,1 KB) da Alireza
k-means, mean-shift and normalized-cut segmentation
9,4K download
Aggiornato 27 ago 2015

Visualizza la licenza

This code implemented a comparison between “k-means” “mean-shift” and “normalized-cut” segmentation
Teste methods are:
Kmeans segmentation using (color) only
Kmeans segmentation using (color + spatial)
Mean Shift segmentation using (color) only
Mean Shift segmentation using (color + spatial)
Normalized Cut (inherently uses spatial data)
kmeans parameter is "K" that is Cluster Numbers
meanshift parameter is "bw" that is Mean Shift Bandwidth
ncut parameters are "SI" Color similarity, "SX" Spatial similarity, "r" Spatial threshold (less than r pixels apart), "sNcut" The smallest Ncut value (threshold) to keep partitioning, and "sArea" The smallest size of area (threshold) to be accepted as a segment

an implementation by "Naotoshi Seo" with a little modification is used for “normalized-cut” segmentation, available online at: "http://note.sonots.com/SciSoftware/NcutImageSegmentation.html". It is sensitive in choosing parameters.
an implementation by "Bryan Feldman" is used for “mean-shift clustering"

Cita come

Alireza (2025). k-means, mean-shift and normalized-cut segmentation (https://it.mathworks.com/matlabcentral/fileexchange/52698-k-means-mean-shift-and-normalized-cut-segmentation), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2011a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Cluster Analysis and Anomaly Detection in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0.0

FX submission added