The algorithm assumes unimodal, non-skewed, but possibly non-normal and correlated dataset of an arbitrary dimension. Outliers are the data points which have less than 5% probability of belonging to the dataset. The approach is empirical, based on simulating 95% quantile of Pearson distributions with zero skew and kurtosis varying from 1.8 (uniform distribution) to 6 (Laplace distribution). The simulation results were linearly fit vs the number of datapoints and the dataset's kurtosis. Dependence of the results on the dataset dimensionality was very slight and was ignored.
Cita come
Yury (2024). find_outliers (https://www.mathworks.com/matlabcentral/fileexchange/54383-find_outliers), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0.0 |
Edited the description.
|