Empirical Orthogonal Function (EOF) with Spatiotemporal Convertion

Empirical Orthogonal Function (EOF) analysis is often used in Meteorology and Climatology
653 download
Aggiornato 25 apr 2016

Visualizza la licenza

In statistics and signal processing, the method of empirical orthogonal function (EOF) analysis is a decomposition of a signal or data set in terms of orthogonal basis functions which are determined from the data. It is the same as performing a principal components analysis on the data, except that the EOF method finds both time series and spatial patterns. The term is also interchangeable with the geographically weighted PCAs in geophysics.
if there are too many spatial grids, the spatiotemporal convertion is often performed to quicken the process, other than EOF_analysis.
As required by users, a new version of Empirical Orthogonal Function (EOF) with Spatiotemporal Convertion is provided here.

Cita come

Zhou Chunlüe (2024). Empirical Orthogonal Function (EOF) with Spatiotemporal Convertion (https://www.mathworks.com/matlabcentral/fileexchange/54675-empirical-orthogonal-function-eof-with-spatiotemporal-convertion), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2011b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Weather and Atmospheric Science in Help Center e MATLAB Answers
Riconoscimenti

Ispirato da: Empirical Orthogonal Function (EOF) analysis

Ispirato: EOF

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.2.0.0

update the figure
add some example figures
As required by users, a new version of Empirical Orthogonal Function (EOF) with Spatiotemporal Convertion is provided here.

1.1.0.0

As required by users, a new version of Empirical Orthogonal Function (EOF) with Spatiotemporal Convertion is provided here.

1.0.0.0