Al momento, stai seguendo questa presentazione
- Vedrai gli aggiornamenti nel tuo feed del contenuto seguito
- Potresti ricevere delle email a seconda delle tue preferenze per le comunicazioni
Condividi 'GPstuff'
The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.
Cita come
Aki Vehtari (2025). GPstuff (https://github.com/gpstuff-dev/gpstuff), GitHub. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- AI and Statistics > Statistics and Machine Learning Toolbox > Industrial Statistics >
- AI and Statistics > Statistics and Machine Learning Toolbox > Regression > Model Building and Assessment > Bayesian Regression >
Tag Aggiungi tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
diag
- Contents.m
- acorr
- acorr2
- acorrtime
- aucs
- auct
- cipsrf
- cmpsrf
- cpsrf
- custats
- cusum
- derivativecheck
- diag_install
- ext_auc
- gbinit
- gbiter
- geyer_icse
- geyer_imse
- gradcheck
- hair
- hcs
- hct
- hpdi
- idis
- ipsrf
- kernel1
- kernelp
- kernels
- ksstat
- mpsrf
- ndhist
- psrf
- rsqr
- score
dist
- Contents.m
- beta_cdf
- beta_inv
- beta_lpdf
- beta_pdf
- betarand
- catrand
- dir_lpdf
- dir_pdf
- dirrand
- dist_install
- exprand
- gam_cdf
- gam_lpdf
- gam_pdf
- gamrand
- gamrand1
- geo_lpdf
- hammersley
- intrand
- invgam_lpdf
- invgam_pdf
- invgamrand
- invgamrand1
- invwishrand
- laplace_lpdf
- laplace_pdf
- logn_lpdf
- logt_lpdf
- mnorm_lpdf
- mnorm_pdf
- nbin_cdf
- nbin_inv
- nbin_pdf
- negbin_lpdf
- negbin_pdf
- negbinztr_lpdf
- negbinztr_pdf
- norm_cdf
- norm_inv
- norm_lpdf
- norm_pdf
- normltrand
- normrtrand
- normtrand
- normtzrand
- poiss_lpdf
- poiss_pdf
- prior_corrunif
- prior_fixed
- prior_gamma
- prior_gaussian
- prior_invgamma
- prior_invt
- prior_invunif
- prior_laplace
- prior_loggaussian
- prior_loglogunif
- prior_logt
- prior_logunif
- prior_sinvchi2
- prior_sqinvgamma
- prior_sqinvlogunif
- prior_sqinvsinvchi2
- prior_sqinvunif
- prior_sqrtinvt
- prior_sqrtinvunif
- prior_sqrtt
- prior_sqrtunif
- prior_t
- prior_unif
- sinvchi2_lpdf
- sinvchi2_pdf
- sinvchi2rand
- t_cdf
- t_inv
- t_lpdf
- t_pdf
- trand
- unifrand
- wishrand
gp
- Contents.m
- cf_exp_to_ss
- cf_matern32_to_ss
- cf_matern52_to_ss
- cf_periodic_to_ss
- cf_prod_to_ss
- cf_quasiperiodic_to_ss
- cf_rq_to_ss
- cf_se_to_ss
- cf_sum_to_ss
- demo_additive.m
- demo_bayesoptimization1.m
- demo_bayesoptimization2.m
- demo_bayesoptimization3.m
- demo_binomial1.m
- demo_binomial2.m
- demo_binomial_apc.m
- demo_classific.m
- demo_derivativeobs.m
- demo_derivatives.m
- demo_epinf.m
- demo_hierprior.m
- demo_hurdle.m
- demo_improvemarginals.m
- demo_improvemarginals2.m
- demo_inputdependentnoise.m
- demo_inputdependentweibull.m
- demo_kalman1.m
- demo_kalman2.m
- demo_lgcp.m
- demo_lgpdens.m
- demo_loopred.m
- demo_mcmc.m
- demo_memorysave.m
- demo_minimal.m
- demo_modelassesment1.m
- demo_modelassesment2.m
- demo_monotonic.m
- demo_monotonic2.m
- demo_multiclass.m
- demo_multiclass_nested_ep.m
- demo_multinom.m
- demo_multivariategp.m
- demo_neuralnetcov.m
- demo_passgp.m
- demo_periodic.m
- demo_quantilegp.m
- demo_regression1.m
- demo_regression_additive1.m
- demo_regression_additive2.m
- demo_regression_hier.m
- demo_regression_meanf.m
- demo_regression_ppcs.m
- demo_regression_robust.m
- demo_regression_sparse1.m
- demo_regression_sparse2.m
- demo_spatial1.m
- demo_spatial2.m
- demo_survival_aft.m
- demo_survival_coxph.m
- demo_svi_classific.m
- demo_svi_regression.m
- demo_ziloggaussian.m
- demo_zinegbin.m
- esls
- expectedimprovement_eg
- expectedvariance_eg
- expm
- gp_avpredcomp
- gp_cov
- gp_cpred
- gp_dcov
- gp_dic
- gp_dtrcov
- gp_e
- gp_eg
- gp_g
- gp_ia
- gp_install
- gp_jpred
- gp_kfcv
- gp_kfcv_cdf
- gp_kfcve
- gp_looe
- gp_looeg
- gp_loog
- gp_loopred
- gp_mc
- gp_monotonic
- gp_optim
- gp_pak
- gp_peff
- gp_plot
- gp_pred
- gp_predcdf
- gp_predcm
- gp_predprctmu
- gp_predprcty
- gp_rnd
- gp_set
- gp_trcov
- gp_trvar
- gp_unpak
- gp_waic
- gpcf_additive
- gpcf_cat
- gpcf_constant
- gpcf_covar
- gpcf_exp
- gpcf_linear
- gpcf_linearLogistic
- gpcf_linearMichelismenten
- gpcf_mask
- gpcf_matern32
- gpcf_matern52
- gpcf_neuralnetwork
- gpcf_noise
- gpcf_periodic
- gpcf_ppcs0
- gpcf_ppcs1
- gpcf_ppcs2
- gpcf_ppcs3
- gpcf_prod
- gpcf_rq
- gpcf_scaled
- gpcf_sexp
- gpcf_squared
- gpcf_sum
- gpep_e
- gpep_g
- gpep_jpred
- gpep_looe
- gpep_loog
- gpep_loopred
- gpep_pred
- gpep_predgrad
- gpia_jpred
- gpia_jpreds
- gpia_loopred
- gpia_pak
- gpia_pred
- gpia_unpak
- gpla_e
- gpla_g
- gpla_jpred
- gpla_looe
- gpla_loopred
- gpla_pred
- gpmc_jpred
- gpmc_jpreds
- gpmc_loopred
- gpmc_loopreds
- gpmc_pak
- gpmc_pred
- gpmc_preds
- gpmc_unpak
- gpmf_constant
- gpmf_linear
- gpmf_squared
- gpsvi_e
- gpsvi_g
- gpsvi_pred
- gpsvi_predgrad
- lgcp
- lgpdens
- lgpdens_cum
- lik_binomial
- lik_coxph
- lik_epgaussian
- lik_gaussian
- lik_gaussiansmt
- lik_inputdependentnoise
- lik_inputdependentweibull
- lik_laplace
- lik_lgp
- lik_lgpc
- lik_liks
- lik_loggaussian
- lik_logit
- lik_loglogistic
- lik_multinom
- lik_multinomprobit
- lik_negbin
- lik_negbinztr
- lik_poisson
- lik_probit
- lik_qgp
- lik_softmax
- lik_t
- lik_weibull
- lik_ziloggaussian
- lik_zinegbin
- metric_distancematrix
- metric_euclidean
- passgp
- pred_coxph
- pred_coxphhs
- pred_coxphp
- scaled_hmc
- scaled_mh
- ss_balance
- surrogate_sls
- svigp
gp/private
- dist_euclidean
- gp_finddeltadist
- gp_looprep
- hash_sha512
- ldlrowmodify
- mean_gf
- mean_jpredf
- mean_predf
- mean_prep
- mvm_fft
- mvm_kron
- quad_moments
- spinv
- trcov
mc
- Contents.m
- batchmc
- bbmean
- bbprctile
- gibbs
- hmc2
- hmc2_opt
- hmc_nuts
- join
- mc_install
- metrop2
- metrop2_opt
- randpick
- resampdet
- resampres
- resampsim
- resampstr
- resampwor
- sls
- sls1mm
- sls1mm_opt
- sls_opt
- take_nth
- thin
mc/private
misc
- Contents.m
- addlogs
- binsgeq
- cvit
- denormdata
- gpdfitnew
- gpstuff_version
- hmean
- logit
- logitinv
- m2kml
- mapcolor
- mapcolor2
- mapcolor_log
- normdata
- psislw
- set_PIC
- setrandstream
- softmax2
- str2fun
- sumlogs
- violinplot
- wmean
- wprctile
optim
tests
- rundemo
- runtestset
- test_bayesoptimization1
- test_bayesoptimization2
- test_bayesoptimization3
- test_binomial1
- test_binomial2
- test_binomial_apc
- test_classific
- test_derivativeobs
- test_derivatives
- test_epinf
- test_hierprior
- test_hurdle
- test_improvemarginals
- test_kalman1
- test_kalman2
- test_lgcp
- test_loopred
- test_memorysave
- test_modelassesment1
- test_modelassesment2
- test_monotonic2
- test_multiclass
- test_multiclass_nested_ep
- test_multinom
- test_multivariategp
- test_neuralnetcov
- test_periodic
- test_quantilegp
- test_regression1
- test_regression_additive1
- test_regression_additive2
- test_regression_hier
- test_regression_meanf
- test_regression_ppcs
- test_regression_robust
- test_regression_sparse1
- test_regression_sparse2
- test_spatial1
- test_spatial2
- test_survival_aft
- test_survival_coxph
- test_svi_classific
- test_svi_regression
- test_zinegbin
- verifyVarsEqual
Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 4.6.0.0 |
|
Seleziona un sito web
Seleziona un sito web per visualizzare contenuto tradotto dove disponibile e vedere eventi e offerte locali. In base alla tua area geografica, ti consigliamo di selezionare: .
Puoi anche selezionare un sito web dal seguente elenco:
Come ottenere le migliori prestazioni del sito
Per ottenere le migliori prestazioni del sito, seleziona il sito cinese (in cinese o in inglese). I siti MathWorks per gli altri paesi non sono ottimizzati per essere visitati dalla tua area geografica.
Americhe
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia-Pacifico
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)
