Non-crossing polynomial quantile regression
ncquantreg finds the coefficients of a polynomial p(x) of degree n that fits the data in vector x to the quantiles tau of y.
ncquantreg(x,y) performs median regression (tau = 0.5) using a polynomial of degree n=1.
ncquantreg(x,y,n,tau) fits numel(tau) polynomials with degree n. The algorithm uses a stepwise multiple quantile regression estimation using non-crossing constraints (Wu and Liu, 2009). The approach is stepwise in a sense that a quantile function is estimated so that it does not cross with a function fitted in a previous step. The algorithm starts from the middle quantile (i.e. the one closest to 0.5) and than progressivly works through the quantiles with increasing distance from the middle.
ncquantreg(x,y,n,tau,pn,pv,...) takes several parameter name value pairs that control the algorithm and plotting.
Reference
Wu, Y., Liu, Y., 2009. Stepwise multiple quantile regression estimation using non-crossing constraints. Statistics and its Interface 2, 299–310.
Cita come
Wolfgang Schwanghart (2024). Non-crossing polynomial quantile regression (https://github.com/wschwanghart/ncquantreg), GitHub. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- AI and Statistics > Statistics and Machine Learning Toolbox > Regression > Linear Regression >
- MATLAB > Mathematics > Elementary Math > Polynomials >
Tag
Riconoscimenti
Ispirato da: quantreg(x,y,tau,order,Nboot)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.1.0.0 | Changed title |
|
|
1.0.0.0 |