EM for Mixture of Bernoulli (Unsupervised Naive Bayes) for clustering binary data

EM for Mixture of Bernoulli (Unsupervised Naive Bayes) for clustering binary data
599 download
Aggiornato 9 mar 2016

Visualizza la licenza

Just like EM of Gaussian Mixture Model, this is the EM algorithm for fitting Bernoulli Mixture Model.
GMM is useful for clustering real value data. However, for binary data (such as bag of word feature) Bernoulli Mixture is more suitable.

EM for Mixture of Bernoulli can be also viewed as an unsupervised version of Naive Bayes classifier, where the M step is Naive Bayes training and E step is Naive Bayes prediction.

This package is now a part of the PRML toolbox (http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox).

Cita come

Mo Chen (2024). EM for Mixture of Bernoulli (Unsupervised Naive Bayes) for clustering binary data (https://www.mathworks.com/matlabcentral/fileexchange/55882-em-for-mixture-of-bernoulli-unsupervised-naive-bayes-for-clustering-binary-data), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2016a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0.0