kmeans_varpar(X,k)
Implementation of K-means with Variance Partitioning initialization. Variance Partitioning initialization is a deterministic way of initializing the data centroids, thus producing results that are repeatable and reproducible, without having to resort to tricks like seeding the pseudorandom number generator.
Cita come
Stefan Philippo Pszczolkowski Parraguez (2025). kmeans_varpar(X,k) (https://www.mathworks.com/matlabcentral/fileexchange/57229-kmeans_varpar-x-k), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- AI and Statistics > Statistics and Machine Learning Toolbox > Cluster Analysis and Anomaly Detection >
Tag
Riconoscimenti
Ispirato da: k-means++
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.1.0 | Removed loop that made sure that the number of returned centrers is equal to the specified k. This is arguably not necessary and since variance partitioning provides a deterministic result, there is potential for getting trapped in an infinite loop.
|
||
1.0.0.0 |