Robust Lasso Regression with Student-t Residuals

Versione 1.0.0.0 (24,8 KB) da Statovic
Estimate robust lasso regression models with Student-t residuals
212 download
Aggiornato 21 mag 2017

Visualizza la licenza

This code implements the estimation of robust regression models using the lasso procedure. Robustness is handled by modelling the residuals as arising from a Student-t distribution with an appropriate degrees-of-freedom. The optimization is performed using the expectation-maximization algorithm.
Primary features of the code:
* Automatically produce a complete lasso regularization path for a given degrees-of-freedom
* Select amount of regularization, and the degrees-of-freedom using cross-validation or information criteria

To cite this toolbox:
Schmidt, D.F. and Makalic, E.
Robust Lasso Regression with Student-t Residuals
Lecture Notes in Artificial Intelligence, to appear, 2017

Cita come

Statovic (2025). Robust Lasso Regression with Student-t Residuals (https://it.mathworks.com/matlabcentral/fileexchange/63037-robust-lasso-regression-with-student-t-residuals), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2016a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0.0