Kernel PCA

Kernel PCA analysis with Kernel ridge regression & SVM regression
1K download
Aggiornato 26 mag 2017

Visualizza la licenza

Refer to 6.2.1 KPCA, Kernel Methods for Pattern Analysis, John Shawe-Taylor University of Southampton, Nello Cristianini University of California at Davis
Refer to 6.2.2 Kernel Ridge Regression, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Nello Cristianini and John Shawe-Taylor

Kernel PCA:
Kernel PCA is the application of PCA in a kernel-defined feature space making use of the dual representation.
http://pca.narod.ru/scholkopf_kernel.pdf

Reference: (for SVR) https://in.mathworks.com/matlabcentral/fileexchange/63060-support-vector-regression Reference: (for Ridge regression)https://in.mathworks.com/matlabcentral/fileexchange/63122-kernel-ridge-regression

Cita come

Bhartendu (2024). Kernel PCA (https://www.mathworks.com/matlabcentral/fileexchange/63130-kernel-pca), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2016a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0.0