AdaBoost

AdaBoost, Weak classifiers: GDA, Knn, Naive Bayes, Linear, SVM
1,4K download
Aggiornato 28 mag 2017

Visualizza la licenza

AdaBoost Demo, with various Weak classifiers:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AdaBoost :
AdaBoost (Adaptive Boosting) generates a sequence of hypothesis and combines them with weights.

::Choosen Weak classifiers::
1. GDA
2. Knn (NumNeighbors = 30)
3. Naive Bayes
4. Linear (Logistic Regression*)
5. SVM ('KernelFunction: rbf')

Refer to: https://www.iist.ac.in/sites/default/files/people/in12167/adaboost.pdf

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Contents:
1. Initialization (Dataset:: NoisyData.csv)
2. Gaussian Discriminant Analysis Classification
3. Knn Classification
4. Naive Bayes Classification
5. Logistic Regression
6. SVM (rbf) Classification
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
| Adaboost (GDA, Knn, NB, Logistic, SVM) |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7. Conclusions

Related Examples:
1. SVM
https://in.mathworks.com/matlabcentral/fileexchange/63158-support-vector-machine

2. SVM using various kernels
https://in.mathworks.com/matlabcentral/fileexchange/63033-svm-using-various-kernels

3. SVM for nonlinear classification
https://in.mathworks.com/matlabcentral/fileexchange/63024-svm-for-nonlinear-classification

4. SMO
https://in.mathworks.com/matlabcentral/fileexchange/63100-smo--sequential-minimal-optimization-

5. AdaBoost+ PCA
https://in.mathworks.com/matlabcentral/fileexchange/63161-adaboost--pca--capstone-project-

Cita come

Bhartendu (2024). AdaBoost (https://www.mathworks.com/matlabcentral/fileexchange/63162-adaboost), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2015a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0.0