OnlineGradedPossibi​​listicClustering

Implementation of Online Graded Possibilistic Clustering "OGPC" Clustering in MATLAB
181 download
Aggiornato 1 ott 2017

Visualizza la licenza

Implementation of Online Graded Possibilistic Clustering "OGPC" Clustering in MATLAB.
An algorithm that is able to detect outliers and adapt to concept shift drift in data streams.
Read more about the online algorithm "https://www.springerprofessional.de/graded-possibilistic-clustering-of-non-stationary-data-streams/12047532.
Notes:
- This a modified version of the online algorithm (Algorithm able to detect outliers and adapt to concept shift).
- The algorithm can work on raw (But you will have to change dynamic plot axis limit to visualize the clusters centroids) and on normalized data (Apply normalizer on the training set).
Developer: Amr Abdullatif (DIBRIS-University of Genoa)
Publisher: DIBRIS (www.dibris.unige.it)
Contact Info: amr.r.abdullatif@gmail.com
Function:
[rhovals,summembership,U, Youtn, Y, normvals, bend, uval, yval] = ogpc(X, Y, fb, K, maxiter, eta0, alphamin, plt)

Cita come

Amr Abdullatif (2025). OnlineGradedPossibi​listicClustering (https://it.mathworks.com/matlabcentral/fileexchange/64318-onlinegradedpossibi-listicclustering), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2017a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Fuzzy Logic Toolbox in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

html/

Versione Pubblicato Note della release
1.3

Change in
- learning region parameters (Concept drift "slow learn", outliers "no learn", Concept shift "fast learn").
- Cluster width update function.

1.2.0.0

Change
Update beta inside ogpc.m
" bi0 = bend ; "

1.1.0.0

Modify title and description.

Update description.
Update description structure.