2D Homography Matrix Decomposition Using Polar Decomposition

Versione 1.0.0.0 (11,1 KB) da Han Gong
2D Homography Matrix Decomposition Using Polar Decomposition
171 download
Aggiornato 14 set 2017

This is a MATLAB MEX implementaion.
A 2D homography matrix M can be meaningful primitive components, as

H = RSN = R(UKU')N

where R is a rotation matrix, N is ±I, and S is a symmetric positive definite stretch matrix. The stretch matrix can optionally be factored, though not uniquely, as UKU', where U is a rotation matrix and K is diagonal and positive. N can be multiplied into S if desired.

Copyright 2017 Han Gong, Unviersity of East Anglia gong@fedoraproject.org

Reference: Shoemake, Ken, and Tom Duff. "Matrix animation and polar decomposition." In Proceedings of the conference on Graphics interface, vol. 92, pp. 258-264. 1992.

Compilation

$ make

Usage

[r,u,k,n] = TransformDecompose(H);

Note that the rotation r and u are returend in quaternion parameter form. Use quat2rotm to convert a quaternion to a rotation matrix. k is the diagnal elements of the diagnal matrix K. n is a sign paramter (-1 or 1). Please also see "Demo.m" for the usage of 2D homographical change interpolation.

Cita come

Han Gong (2025). 2D Homography Matrix Decomposition Using Polar Decomposition (https://github.com/hangong/H_Decomposition), GitHub. Recuperato .

Compatibilità della release di MATLAB
Creato con R2012b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Matrix Decomposition in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
1.0.0.0

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.