2D Homography Matrix Decomposition Using Polar Decomposition
This is a MATLAB MEX implementaion.
A 2D homography matrix M can be meaningful primitive components, as
H = RSN = R(UKU')N
where R is a rotation matrix, N is ±I, and S is a symmetric positive definite stretch matrix. The stretch matrix can optionally be factored, though not uniquely, as UKU', where U is a rotation matrix and K is diagonal and positive. N can be multiplied into S if desired.
Copyright 2017 Han Gong, Unviersity of East Anglia gong@fedoraproject.org
Reference: Shoemake, Ken, and Tom Duff. "Matrix animation and polar decomposition." In Proceedings of the conference on Graphics interface, vol. 92, pp. 258-264. 1992.
Compilation
$ make
Usage
[r,u,k,n] = TransformDecompose(H);
Note that the rotation r and u are returend in quaternion parameter form. Use quat2rotm to convert a quaternion to a rotation matrix. k is the diagnal elements of the diagnal matrix K. n is a sign paramter (-1 or 1). Please also see "Demo.m" for the usage of 2D homographical change interpolation.
Cita come
Han Gong (2025). 2D Homography Matrix Decomposition Using Polar Decomposition (https://github.com/hangong/H_Decomposition), GitHub. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0.0.0 |
|
