matzewolf/kMeans

k-means (unsupervised learning/clustering) algorithm implemented in MATLAB.
964 download
Aggiornato 13 gen 2018

Cluster_2D_Visualization.m is a script that generates random (uniformly) distributed data points, runs both kMeans.m and MATLAB's built-in kmeans function, measures and compares their performance (i.e. computing time) and visualizes the final clusters and the distribution of the data points in the clusters in a histogram.
kMeans.m implements k-means (unsupervised learning/clustering algorithm). Technical Details:
The initial centroids are randomly selected out of the set of all data points (every data points maximum once).
The stopping condition is that no changes to any cluster is made.
clustering_app.mlapp opens an App with GUI where you can randomly generate data points and cluster them. You can re-hit all buttons to see the randomness in both point generation and the clustering algorithm.
clustering_app.mlappinstall installs the MATLAB App in the MATLAB Editor.

Cita come

matzewolf (2026). matzewolf/kMeans (https://github.com/matzewolf/kMeans), GitHub. Recuperato .

Compatibilità della release di MATLAB
Creato con R2017a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Statistics and Machine Learning Toolbox in Help Center e MATLAB Answers

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
1.1.0.0

Added MATLAB GUI App for interactive clustering.

1.0.0.0

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.