OmarMSaad/1D-Modified-Laplacian-of-Gaussian-Filter-for-Smoothing-and-Denoising-

DOI: https://doi.org/10.1016/j.cageo.2018.01.013
334 download
Aggiornato 9 feb 2018

# 1D-Modified-Laplacian-of-Gaussian-Filter-for-Smoothing-and-Denoising-
% 1D Modified Laplacian of Gaussian (MLOG).
% [Gaussian_1D_2_Diff_Modified]=MLOG(sigma,N) returns the 1-D Modified Laplacian of Gaussian Mask.
% "Automatic arrival time detection for earthquakes based on Modified Laplacian of Gaussian filter", in Computers and Geosciences journal.
% This filter is a denoising filter which can deal with several types of signals.
% DOI: https://doi.org/10.1016/j.cageo.2018.01.013
INPUT VARIABLES
% N : Filter Order
% sigma : standard deviation
%
% OUTPUT VARIABLES
% Gaussian_1D_2_Diff_Modified : The Cofficients of MLOG (Mask)
%
% COMMENTS:
% If you need to reach any equation in the paper rather than the final equation,
% you can change the name of the output in this function
%
% EXAMPLE:
% N = 10; sigma = 2.5;
% [Gaussian_1D_2_Diff_Modified]=MLOG(sigma,N);
%
% Code written by Omar M. Saad
% Last update: January 25, 2018
% Copyright 2018 Omar M. Saad
% Contact : omar.saad@ejust.edu.eg

Cita come

omar mohamed (2026). OmarMSaad/1D-Modified-Laplacian-of-Gaussian-Filter-for-Smoothing-and-Denoising- (https://github.com/OmarMSaad/1D-Modified-Laplacian-of-Gaussian-Filter-for-Smoothing-and-Denoising-), GitHub. Recuperato .

Compatibilità della release di MATLAB
Creato con R2017a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
1.0.0.0

More Details about using the MLOG Function.
Upload Cover image.

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.