MUCOS

Detecting Common Actions in Motion Capture Data and Videos
114 download
Aggiornato 13 feb 2018

Visualizza la licenza

This code is a simple implementation of OF COMMONALITY DETECTION METHOD PROPOSED IN [1]
Given an distance matrix (D) of two action sequences, our method discovers all pairs of similar subsequences, i.e. subsequences that represent the same action.
This is achieved in a completely unsupervised manner, i.e., without any prior knowledge of the type of actions, their number and their duration. These common subsequences (commonalities) may be located anywhere in the original sequences, may differ in duration and may be performed under different conditions e.g., by a different actor.

We will appreciate if you cite our papers [1, 2] in your work:

More details can be found in https://sites.google.com/site/costaspanagiotakis/research/mucos

[1] Panagiotakis, C., Papoutsakis, K., & Argyros, A. (2018). A graph-based approach for detecting common actions
in motion capture data and videos. Pattern Recognition, 79, 1-11.

[2] K. Papoutsakis, C. Panagiotakis and A.A. Argyros, "Temporal Action Co-Segmentation in 3D Motion Capture Data and Videos", In IEEE Computer Vision and Pattern Recognition (CVPR 2017), IEEE, Honolulu, Hawaii, USA, July 2017.

Cita come

Costas Panagiotakis (2025). MUCOS (https://it.mathworks.com/matlabcentral/fileexchange/66032-mucos), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2016a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Tracking and Motion Estimation in Help Center e MATLAB Answers
Riconoscimenti

Ispirato: Cell Segmentation - SEG-SELF Method

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0.0

Summary update