Nonlinear System Identification using RBF Neural Network
In this simulation I implemented an RBF-NN for the zero order approximation of a nonlinear system. The simulation includes Monte Carlo simulation setup and the RBF NN code. For system estimation Gaussian kernels with fixed centers and spread are used. Whereas, the weights and the bias of the RBF-NN are optimized using the gradient descent-based adaptive learning algorithm.
Citation:
Khan, S., Naseem, I., Togneri, R. et al. Circuits Syst Signal Process (2017) 36: 1639. doi:10.1007/s00034-016-0375-7
https://link.springer.com/article/10.1007/s00034-016-0375-7
Cita come
Shujaat Khan (2024). Nonlinear System Identification using RBF Neural Network (https://www.mathworks.com/matlabcentral/fileexchange/66322-nonlinear-system-identification-using-rbf-neural-network), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- AI and Statistics > Deep Learning Toolbox > Function Approximation, Clustering, and Control > Function Approximation and Clustering >
Tag
Riconoscimenti
Ispirato da: Function approximation using "A Novel Adaptive Kernel for the RBF Neural Networks", Mackey Glass Time Series Prediction using Radial Basis Function (RBF) Neural Network
Ispirato: Nonlinear System Identification using Spatio-Temporal RBF-NN
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
html/
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0.0 |