Nonlinear System Identification using RBF Neural Network

Nonlinear System Identification using RBF Neural Network
1,2K download
Aggiornato 5 mar 2018

Visualizza la licenza

In this simulation I implemented an RBF-NN for the zero order approximation of a nonlinear system. The simulation includes Monte Carlo simulation setup and the RBF NN code. For system estimation Gaussian kernels with fixed centers and spread are used. Whereas, the weights and the bias of the RBF-NN are optimized using the gradient descent-based adaptive learning algorithm.
Citation:
Khan, S., Naseem, I., Togneri, R. et al. Circuits Syst Signal Process (2017) 36: 1639. doi:10.1007/s00034-016-0375-7
https://link.springer.com/article/10.1007/s00034-016-0375-7

Cita come

Shujaat Khan (2024). Nonlinear System Identification using RBF Neural Network (https://www.mathworks.com/matlabcentral/fileexchange/66322-nonlinear-system-identification-using-rbf-neural-network), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2017a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0.0