Parallel Computing TEDA Clustering Algorithm
The package contains:
1. ParallelTEDAClustering.m - The source code of the parallel computing TEDA clustering algorithm;
2. demo.m - The demo
Reference:
Gu X., Angelov P.P., Gutierrez G., Iglesias J.A., Sanchis A. (2017) Parallel Computing TEDA for High Frequency Streaming Data Clustering. In: Angelov P., Manolopoulos Y., Iliadis L., Roy A., Vellasco M. (eds) Advances in Big Data. INNS 2016. Advances in Intelligent Systems and Computing, vol 529. Springer, Cham
Please cite this algorithm using the above reference if this code helps.
For any queries about the codes, please contact Prof. Plamen P. Angelov (p.angelov@lancaster.ac.uk) and Dr. Xiaowei Gu (x.gu3@lancaster.ac.uk)
Programmed by Xiaowei Gu
Cita come
Gu X., Angelov P.P., Gutierrez G., Iglesias J.A., Sanchis A. (2017) Parallel Computing TEDA for High Frequency Streaming Data Clustering. In: Angelov P., Manolopoulos Y., Iliadis L., Roy A., Vellasco M. (eds) Advances in Big Data. INNS 2016. Advances in Intelligent Systems and Computing, vol 529. Springer, Cham
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
