Parallel Computing TEDA Clustering Algorithm

The source code of the parallel computing TEDA clustering algorithm
195 download
Aggiornato 11 nov 2018

Visualizza la licenza

The package contains:

1. ParallelTEDAClustering.m - The source code of the parallel computing TEDA clustering algorithm;

2. demo.m - The demo

Reference:
Gu X., Angelov P.P., Gutierrez G., Iglesias J.A., Sanchis A. (2017) Parallel Computing TEDA for High Frequency Streaming Data Clustering. In: Angelov P., Manolopoulos Y., Iliadis L., Roy A., Vellasco M. (eds) Advances in Big Data. INNS 2016. Advances in Intelligent Systems and Computing, vol 529. Springer, Cham

Please cite this algorithm using the above reference if this code helps.

For any queries about the codes, please contact Prof. Plamen P. Angelov (p.angelov@lancaster.ac.uk) and Dr. Xiaowei Gu (x.gu3@lancaster.ac.uk)

Programmed by Xiaowei Gu

Cita come

Gu X., Angelov P.P., Gutierrez G., Iglesias J.A., Sanchis A. (2017) Parallel Computing TEDA for High Frequency Streaming Data Clustering. In: Angelov P., Manolopoulos Y., Iliadis L., Roy A., Vellasco M. (eds) Advances in Big Data. INNS 2016. Advances in Intelligent Systems and Computing, vol 529. Springer, Cham

Compatibilità della release di MATLAB
Creato con R2018a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Statistics and Machine Learning Toolbox in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.1

Updated the reference

1.0.0