PCA for dimension reduction in 1D data
Versione 1.0.0 (2,05 KB) da
Selva
using principal component analysis for dimension reduction of feature vector in the SVM classification problem
PCA is used for projecting data matrix from higher dimension to lower dimension
Cita come
Selva (2024). PCA for dimension reduction in 1D data (https://www.mathworks.com/matlabcentral/fileexchange/68942-pca-for-dimension-reduction-in-1d-data), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Creato con
R2018b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e MATLAB Answers
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0 |