356 download
Aggiornato 13 feb 2021

Fast Iterative Filtering for the decompostion of non-stationary signals [1,2,3].

Please refer to "Example_v8.m" and "Example_real_life_v6.m" for examples of how to use the code.

It is based on FFT, which makes FIF to be really fast [2,3]. This implies that it is required a periodical extension at the boundaries.

To overcome this limitation we can preextend the signal under investigation [4]. We do it thanks to the function "Extend_sig_v2.m". See "Example_real_life_v6.m" for an example of application.

Please cite our works:

[1] A. Cicone, J. Liu, H. Zhou. "Adaptive Local Iterative Filtering for Signal Decomposition and Instantaneous Frequency analysis". Applied and Computational Harmonic Analysis, Volume 41, Issue 2, September 2016, Pages 384-411. doi:10.1016/j.acha.2016.03.001 Arxiv http://arxiv.org/abs/1411.6051

[2] A. Cicone, H. Zhou. "Numerical Analysis for Iterative Filtering with New Efficient Implementations Based on FFT". Numerische Mathematik, 2020. doi: 10.1007/s00211-020-01165-5 ArXiv http://arxiv.org/abs/1802.01359

[3] A. Cicone. "Iterative Filtering as a direct method for the decomposition of nonstationary signals". Numerical Algorithms, Volume 373, 2020, 112248. doi: 10.1007/s11075-019-00838-z ArXiv http://arxiv.org/abs/1811.03536

[4] A. Stallone, A. Cicone, M. Materassi. "New insights and best practices for the successful use of Empirical Mode Decomposition, Iterative Filtering and derived algorithms". Scientific Reports, Volume 10, article number 15161, 2020. doi: 10.1038/s41598-020-72193-2

Cita come

Antonio (2024). FIF (https://github.com/Acicone/FIF/releases/tag/2.12.1), GitHub. Recuperato .

Cicone, Antonio, et al. “Adaptive Local Iterative Filtering for Signal Decomposition and Instantaneous Frequency Analysis.” Applied and Computational Harmonic Analysis, vol. 41, no. 2, Elsevier BV, Sept. 2016, pp. 384–411, doi:10.1016/j.acha.2016.03.001.

Visualizza più stili

Cicone, Antonio, and Haomin Zhou. “Numerical Analysis for Iterative Filtering with New Efficient Implementations Based on FFT.” Numerische Mathematik, vol. 147, no. 1, Springer Science and Business Media LLC, Jan. 2021, pp. 1–28, doi:10.1007/s00211-020-01165-5.

Visualizza più stili

Cicone, Antonio. “Iterative Filtering as a Direct Method for the Decomposition of Nonstationary Signals.” Numerical Algorithms, vol. 85, no. 3, Springer Science and Business Media LLC, Feb. 2020, pp. 811–27, doi:10.1007/s11075-019-00838-z.

Visualizza più stili

Stallone, Angela, et al. “New Insights and Best Practices for the Successful Use of Empirical Mode Decomposition, Iterative Filtering and Derived Algorithms.” Scientific Reports, vol. 10, no. 1, Springer Science and Business Media LLC, Sept. 2020, doi:10.1038/s41598-020-72193-2.

Visualizza più stili
Compatibilità della release di MATLAB
Creato con R2020a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
2.12.1

See release notes for this release on GitHub: https://github.com/Acicone/FIF/releases/tag/2.12.1

2.12.0

-new get_mask_v1_1 function
-we discontinue using Maxmins functions. We now rely on Matlab functions islocalmin and islocalmax

1.0.0

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.