Simple Deep Learning Algorithms with K-fold Cross-Validation

Versione 1.1 (4,28 KB) da Jingwei Too
This toolbox offers convolution neural networks (CNN) using k-fold cross-validation, which are simple and easy to implement.
3,3K download
Aggiornato 20 dic 2020

Jx-DLT : Deep Learning Toolbox

* This toolbox contains the convolution neural network (CNN)

* The < Main.m file > shows examples of how to use CNN programs with the benchmark data set. Note we demo the CNN using one to three convolution layers setup.

* Detail of this toolbox can be found at https://github.com/JingweiToo/Deep-Learning-Toolbox

**********************************************************************************************************************************

Cita come

Too, Jingwei, et al. “Featureless EMG Pattern Recognition Based on Convolutional Neural Network.” Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 3, Institute of Advanced Engineering and Science, June 2019, p. 1291, doi:10.11591/ijeecs.v14.i3.pp1291-1297.

Compatibilità della release di MATLAB
Creato con R2018a
Compatibile con R2017b e release successive
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Sequence and Numeric Feature Data Workflows in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.1

See release notes for this release on GitHub: https://github.com/JingweiToo/Deep-Learning-Toolbox/releases/tag/1.1

1.0.2

-

1.0.1

-

1.0.0

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.