Multimodal Supervoxel Segmentation

The algorithm used in this code is the modification of the method Simple Linear Iterative Clustering (SLIC) which was proposed by Achanta et
509 download
Aggiornato 2 giu 2019

The algorithm used in this code is the modification of the method Simple Linear Iterative Clustering (SLIC) which was proposed by Achanta et al. (2012).
Our method is optimized for medical images such as MRI, CT, etc. The contributions of our codes compared to conventional 2D and 3D superpixel are as follows:
• Multi-modal input (works for single-modal, as well)
• Taking the spatial resolution of the medical images into account, i.e. the voxel resolution in X and Y directions and the slice thickness.

Cita come

Soltaninejad, Mohammadreza, et al. “Supervised Learning Based Multimodal MRI Brain Tumour Segmentation Using Texture Features from Supervoxels.” Computer Methods and Programs in Biomedicine, vol. 157, Elsevier BV, Apr. 2018, pp. 69–84, doi:10.1016/j.cmpb.2018.01.003.

Visualizza più stili

MSoltaninejad (2025). Multimodal Supervoxel Segmentation (https://github.com/M-Soltaninejad/MultimodalSupervoxel), GitHub. Recuperato .

Compatibilità della release di MATLAB
Creato con R2016b
Compatibile con R2012a e release successive
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
1.0.4

Code description and details updated

1.0.3

"find3.m" is added.
"Supervoxel_3D_MultiProtocol.m" is updated so it runs faster and shows the output supervoxels.

1.0.2

Upload a sample data (used in the paper)

1.0.1

GitHub link added

1.0.0

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.