Efficient Primal-Dual Method for the Obstacle Problem
We solve the non-linearized and linearized obstacle problems efficiently using a primal-dual hybrid gradients method involving projection and/or ?1 penalty. Since this method requires no matrix inversions or explicit identification of the contact set, we find that this method, on a variety of test problems, achieves the precision of previous methods with a speed up of 1–2 orders of magnitude. The derivation of this method is disciplined, relying on a saddle point formulation of the convex problem, and can be adapted to a wide range of other constrained convex optimization problems.
The code provided here was used to produce all figures of the following paper:
Zosso, D., Osting, B., Xia, M., and Osher, S., "An Efficient Primal-Dual Method for the Obstacle Problem", J Sci Comput (2017) 73(1):416-437.
https://doi.org/10.1007/s10915-017-0420-0
Cita come
Dominique Zosso (2024). Efficient Primal-Dual Method for the Obstacle Problem (https://www.mathworks.com/matlabcentral/fileexchange/71886-efficient-primal-dual-method-for-the-obstacle-problem), MATLAB Central File Exchange. Recuperato .
Zosso, Dominique, et al. “An Efficient Primal-Dual Method for the Obstacle Problem.” Journal of Scientific Computing, vol. 73, no. 1, Springer Nature, Mar. 2017, pp. 416–37, doi:10.1007/s10915-017-0420-0.
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.