Constrain Least Mean Square Algorithm

constrain least mean square with L1 and L2 constrains for regression problem
135 download
Aggiornato 30 set 2019

Visualizza la licenza

In this code, a linear equation is used to generate sample data using a slope and bias. Later a Gaussian noise is added to the desired output. The noisy output and original input is used to determine the slope and bias of the linear equation using constrain-LMS algorithm. This implementation of constrain-LMS is based on batch update rule of gradient decent algorithm in which we use the sum of error instead of sample error. You can modify this code to create sample based update rule easily. There are three options of constrain I implemented in this code 'None', 'L1', and 'L2'. You can also change input/noise signal distributions as well to see which constrain work best for which type of signal/noise.

Cita come

Shujaat Khan (2024). Constrain Least Mean Square Algorithm (https://www.mathworks.com/matlabcentral/fileexchange/72899-constrain-least-mean-square-algorithm), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2019b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Riconoscimenti

Ispirato da: Least Mean Square (LMS)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0