Probabilistic Active Learning: Uncertainty Sampling

Package and demo details on GitHub
162 download
Aggiornato 18 mar 2021

- This code implements active learning through uncertainty sampling within a Gaussian Mixture Model (GMM), considering applications to streaming data.

- The code was written for engineering applications (structural health monitoring), implementation details can be found at [https://www.sciencedirect.com/science/article/pii/S0888327019305096], a paper published in Mechanical Systems and Signal Processing (MSSP).

Cita come

@article{BULL2019106294, title = "Probabilistic active learning: An online framework for structural health monitoring", journal = "Mechanical Systems and Signal Processing", volume = "134", pages = "106294", year = "2019", author = "L.A. Bull and T.J. Rogers and C. Wickramarachchi and E.J. Cross and K. Worden and N. Dervilis"}

Bull, L.A., Rogers, T.J., Wickramarachchi, C., Cross, E.J., Worden, K. and Dervilis, N., 2019. Probabilistic active learning: An online framework for structural health monitoring. Mechanical Systems and Signal Processing, 134, p.106294.

Compatibilità della release di MATLAB
Creato con R2019b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Statistics and Machine Learning Toolbox in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
1.0.2

citation updates

1.0.1

_

1.0.0

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.