Latent Common Source Extraction (LCSE)

This is a sample code for testing Latent Common Source Extraction as described in the article, doi: https://doi.org/10.1088/1741-2552/ab13d1
36 download
Aggiornato 9 giu 2020

Latent Common Source Extraction (LCSE) seeks to construct a common latent representation of the SSVEP signal subspace that is stable across multiple trials of EEG data.

The spatial filter thus obtained improves the signal-to-noise ratio (SNR) of the SSVEP components by removing nuisance signals that are irrelevant to the generalized signal representation learnt from the given data.

This is a sample code for testing LCSE as described in the article,

-> Kiran Kumar G. R and Ramasubbareddy M, "Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain–computer interfaces," in Journal of Neural Engineering. doi: https://doi.org/10.1088/1741-2552/ab13d1

-> G. R. K. Kumar and M. R. Reddy, "Multiview MAX-VAR canonical correlation approach for enhancing SSVEP based BCIs," 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago, IL, USA, 2019, pp. 1-4. doi: 10.1109/BHI.2019.8834650

Note: Use the SSVEP benchmark dataset placed in a folder in the same directory as this file

Link : Link: ftp://sccn.ucsd.edu/pub/ssvep_benchmark_dataset/

Cita come

KIRAN KUMAR RAVINDRAN (2025). Latent Common Source Extraction (LCSE) (https://github.com/Kiran-Kumar-GR/LCSE), GitHub. Recuperato .

Kumar, G. R. Kiran, and M. Ramasubba Reddy. “Latent Common Source Extraction via a Generalized Canonical Correlation Framework for Frequency Recognition in SSVEP Based Brain–Computer Interfaces.” Journal of Neural Engineering, vol. 16, no. 4, IOP Publishing, May 2019, p. 046004, doi:10.1088/1741-2552/ab13d1.

Visualizza più stili

Kumar, G. R. Kiran, and M. Ramasubba Reddy. “Multiview MAX-VAR Canonical Correlation Approach for Enhancing SSVEP Based BCIs.” 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), IEEE, 2019, doi:10.1109/bhi.2019.8834650.

Visualizza più stili
Compatibilità della release di MATLAB
Creato con R2019b
Compatibile con R2015b fino a R2019b
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
1.0.2

Links to the associated articles added in the description.

1.0.1

Data Link added

1.0.0

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.