Image Restoration
Basic Concept (SUMMARY)
1. Read an Input Image
2. Defining a Blurr Filter
3. Degrade the Image Quality by applying any filtering (eg Gaussian Blur, Motion Blur)
4. Addition of Minimal Random Noise to the degraded Image (using randn)
5. Computing DFT of Degraded Image
Steps (fft2, fftshift, log of absolute value for display)
6. Computing DFT of Filter (size equal to the image)
Steps (increase the size of filter, ifftshift, fft2, fftshift, log of absolute value for display)
7. Applying the REQUISITE METHOD FOR IMAGE RESTORATION
8. Display the Restored Image in Spatial Domain
Cita come
RFM (2024). Image Restoration (https://www.mathworks.com/matlabcentral/fileexchange/73891-image-restoration), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- Image Processing and Computer Vision > Image Processing Toolbox > Image Filtering and Enhancement > Deblurring >
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0 |