Improved Grey Wolf Optimizer (I-GWO)
The I-GWO algorithm benefits from a new movement strategy named dimension learning-based hunting (DLH) search strategy inherited from the individual hunting behavior of wolves in nature. DLH uses a different approach to construct a neighborhood for each wolf in which the neighboring information can be shared between wolves. This dimension learning used in the DLH search strategy can enhance the balance between local and global search and maintains diversity.
Author and programmer: M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili e-Mail: nadimi@ieee.org, shokooh.taghian94@gmail.com, ali.mirjalili@gmail.com
Main paper: M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, An Improved Grey Wolf Optimizer for Solving, Engineering Problems, Expert Systems with Applications, in press, DOI: 10.1016/j.eswa.2020.113917
Cita come
Seyedali Mirjalili (2024). Improved Grey Wolf Optimizer (I-GWO) (https://www.mathworks.com/matlabcentral/fileexchange/81253-improved-grey-wolf-optimizer-i-gwo), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxTag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
I-GWO
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0 |