Character recognition using LeNet-5
The LeNet-5 model implemented in this project has 3 convolutional layers and 2 fully-connected layers. It has 62,000 training parameters, and the image input size is 32*32. This model achieved 98.48% accuracy on the MNIST test set after training on its train set. MNIST is a dataset of handwritten digits with 70,000 centred fixed-size grey-scale images. More details about the dataset are available in:
http://yann.lecun.com/exdb/mnist
Run the GUI and select your image.
Cita come
Ebrahimi, Amir, et al. “Convolutional Neural Networks for Alzheimer’s Disease Detection on MRI Images.” Journal of Medical Imaging, vol. 8, no. 02, SPIE-Intl Soc Optical Eng, Apr. 2021, doi:10.1117/1.jmi.8.2.024503.
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxTag
Riconoscimenti
Ispirato da: Pre-trained 2D LeNet-5
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.1 | The relevant paper is published. |
|
|
1.0.0 |
|