Principal Component Analysis (PCA) on LANDSAT-8 imagery
Step's that we have followed;
1. Create a composite of bands. In our case, we have created a
composite of 11 bands of LANDSAT-8 images (Dated: 26-12-2020).
2. Convert each band into a column vector.
We will get an array of size n x p. Where p=11 in our case.
3. Standardise the data and apply PCA.
4. Reconstruct the original data.
Cita come
ABHILASH SINGH (2024). Principal Component Analysis (PCA) on LANDSAT-8 imagery (https://www.mathworks.com/matlabcentral/fileexchange/88582-principal-component-analysis-pca-on-landsat-8-imagery), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxTag
Riconoscimenti
Ispirato da: Principal Component Analysis (PCA) on images in MATLAB (GUI)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
PCA on LANDSAT8 imagery
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0 |