simBySolution
Simulate approximate solution of diagonal-drift Merton jump
            diffusion process
Syntax
Description
[
                simulates Paths,Times,Z,N] = simBySolution(MDL,NPeriods)NNTrials sample paths of NVars
                correlated state variables driven by NBrowns Brownian motion
                sources of risk and NJumps compound Poisson processes
                representing the arrivals of important events over NPeriods
                consecutive observation periods. The simulation approximates continuous-time Merton
                jump diffusion process by an approximation of the closed-form solution.
[
                specifies options using one or more name-value pair arguments in addition to the
                input arguments in the previous syntax. Paths,Times,Z,N] = simBySolution(___,Name,Value)
You can perform quasi-Monte Carlo simulations using the name-value arguments for
                    MonteCarloMethod, QuasiSequence, and
                    BrownianMotionMethod. For more information, see Quasi-Monte Carlo Simulation.
Examples
Simulate the approximate solution of diagonal-drift Merton process.
Create a merton object.
AssetPrice = 80;
            Return = 0.03;
            Sigma = 0.16;
            JumpMean = 0.02;
            JumpVol = 0.08;
            JumpFreq = 2;
            
            mertonObj = merton(Return,Sigma,JumpFreq,JumpMean,JumpVol,...
                'startstat',AssetPrice)mertonObj = 
   Class MERTON: Merton Jump Diffusion
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 80
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.16
         Return: 0.03
       JumpFreq: 2
       JumpMean: 0.02
        JumpVol: 0.08
Use simBySolution to simulate NTrials sample paths of NVARS correlated state variables driven by NBrowns Brownian motion sources of risk and NJumps compound Poisson processes representing the arrivals of important events over NPeriods consecutive observation periods. The function approximates continuous-time Merton jump diffusion process by an approximation of the closed-form solution.
nPeriods = 100;
[Paths,Times,Z,N] = simBySolution(mertonObj, nPeriods,'nTrials', 3)Paths = 
Paths(:,:,1) =
   1.0e+03 *
    0.0800
    0.0600
    0.0504
    0.0799
    0.1333
    0.1461
    0.2302
    0.2505
    0.3881
    0.4933
    0.4547
    0.4433
    0.5294
    0.6443
    0.7665
    0.6489
    0.7220
    0.7110
    0.5815
    0.5026
    0.6523
    0.7005
    0.7053
    0.4902
    0.5401
    0.4730
    0.4242
    0.5334
    0.5821
    0.6498
    0.5982
    0.5504
    0.5290
    0.5371
    0.4789
    0.4914
    0.5019
    0.3557
    0.2950
    0.3697
    0.2906
    0.2988
    0.3081
    0.3469
    0.3146
    0.3171
    0.3588
    0.3250
    0.3035
    0.2386
    0.2533
    0.2420
    0.2315
    0.2396
    0.2143
    0.2668
    0.2115
    0.1671
    0.1784
    0.1542
    0.2046
    0.1930
    0.2011
    0.2542
    0.3010
    0.3247
    0.3900
    0.4107
    0.3949
    0.4610
    0.5725
    0.5605
    0.4541
    0.5796
    0.8199
    0.5732
    0.5856
    0.7895
    0.6883
    0.6848
    0.9059
    1.0089
    0.8429
    0.9955
    0.9683
    0.8769
    0.7120
    0.7906
    0.7630
    1.2460
    1.1703
    1.2012
    1.1109
    1.1893
    1.4346
    1.4040
    1.2365
    1.0834
    1.3315
    0.8100
    0.5558
Paths(:,:,2) =
   80.0000
   81.2944
   71.3663
  108.8305
  111.4851
  105.4563
  160.2721
  125.3288
  158.3238
  138.8899
  157.9613
  125.6819
  149.8234
  126.0374
  182.5153
  195.0861
  273.1622
  306.2727
  301.3401
  312.2173
  298.2344
  327.6944
  288.9799
  394.8951
  551.4020
  418.2258
  404.1687
  469.3555
  606.4289
  615.7066
  526.6862
  625.9683
  474.4597
  316.5110
  407.9626
  341.6552
  475.0593
  478.4058
  545.3414
  365.3404
  513.2186
  370.5371
  444.0345
  314.6991
  257.4782
  253.0259
  237.6185
  206.6325
  334.5253
  300.2284
  328.9936
  307.4059
  248.7966
  234.6355
  183.9132
  159.6084
  169.1145
  123.3256
  148.1922
  159.7083
  104.0447
   96.3935
   92.4897
   93.0576
  116.3163
  135.6249
  120.6611
  100.0253
  109.7998
   85.8078
   81.5769
   73.7983
   65.9000
   62.5120
   62.9952
   57.6044
   54.2716
   44.5617
   42.2402
   21.9133
   18.0586
   20.5171
   22.5532
   24.1654
   26.8830
   22.7864
   34.5131
   27.8362
   27.7258
   21.7367
   20.8781
   19.7174
   14.9880
   14.8903
   19.3632
   23.4230
   27.7062
   17.8347
   16.8652
   15.5675
   15.5256
Paths(:,:,3) =
   80.0000
   79.6263
   93.2979
   63.1451
   60.2213
   54.2113
   78.6114
   96.6261
  123.5584
  126.5875
  102.9870
   83.2387
   77.8567
   79.3565
   71.3876
   80.5413
   90.8709
   77.5246
  107.4194
  114.4328
  118.3999
  148.0710
  108.6207
  110.0402
  124.1150
  104.5409
   94.7576
   98.9002
  108.0691
  130.7592
  129.9744
  119.9150
   86.0303
   96.9892
   86.8928
  106.8895
  119.3219
  197.7045
  208.1930
  197.1636
  244.4438
  166.4752
  125.3896
  128.9036
  170.9818
  140.2719
  125.8948
   87.0324
   66.7637
   48.4280
   50.5766
   49.7841
   67.5690
   62.8776
   85.3896
   67.9608
   72.9804
   59.0174
   50.1132
   45.2220
   59.5469
   58.4673
   98.4790
   90.0250
   80.3092
   86.9245
   88.1303
   95.4237
  104.4456
   99.1969
  168.3980
  146.8791
  150.0052
  129.7521
  127.1402
  113.3413
  145.2281
  153.1315
  125.7882
  111.9988
  112.7732
  118.9120
  150.9166
  120.0673
  128.2727
  185.9171
  204.3474
  194.5443
  163.2626
  183.9897
  233.4125
  318.9068
  356.0077
  380.4513
  446.9518
  484.9218
  377.4244
  470.3577
  454.5734
  297.0580
  339.0796
Times = 101×1
     0
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
      ⋮
Z = 
Z(:,:,1) =
   -2.2588
   -1.3077
    3.5784
    3.0349
    0.7147
    1.4897
    0.6715
    1.6302
    0.7269
   -0.7873
   -1.0689
    1.4384
    1.3703
   -0.2414
   -0.8649
    0.6277
   -0.8637
   -1.1135
   -0.7697
    1.1174
    0.5525
    0.0859
   -1.0616
    0.7481
   -0.7648
    0.4882
    1.4193
    1.5877
    0.8351
   -1.1658
    0.7223
    0.1873
   -0.4390
   -0.8880
    0.3035
    0.7394
   -2.1384
   -1.0722
    1.4367
   -1.2078
    1.3790
   -0.2725
    0.7015
   -0.8236
    0.2820
    1.1275
    0.0229
   -0.2857
   -1.1564
    0.9642
   -0.0348
   -0.1332
   -0.2248
   -0.8479
    1.6555
   -0.8655
   -1.3320
    0.3335
   -0.1303
    0.8620
   -0.8487
    1.0391
    0.6601
   -0.2176
    0.0513
    0.4669
    0.1832
    0.3071
    0.2614
   -0.1461
   -0.8757
   -1.1742
    1.5301
    1.6035
   -1.5062
    0.2761
    0.3919
   -0.7411
    0.0125
    1.2424
    0.3503
   -1.5651
    0.0983
   -0.0308
   -0.3728
   -2.2584
    1.0001
   -0.2781
    0.4716
    0.6524
    1.0061
   -0.9444
    0.0000
    0.5946
    0.9298
   -0.6516
   -0.0245
    0.8617
   -2.4863
   -2.3193
Z(:,:,2) =
    0.8622
   -0.4336
    2.7694
    0.7254
   -0.2050
    1.4090
   -1.2075
    0.4889
   -0.3034
    0.8884
   -0.8095
    0.3252
   -1.7115
    0.3192
   -0.0301
    1.0933
    0.0774
   -0.0068
    0.3714
   -1.0891
    1.1006
   -1.4916
    2.3505
   -0.1924
   -1.4023
   -0.1774
    0.2916
   -0.8045
   -0.2437
   -1.1480
    2.5855
   -0.0825
   -1.7947
    0.1001
   -0.6003
    1.7119
   -0.8396
    0.9610
   -1.9609
    2.9080
   -1.0582
    1.0984
   -2.0518
   -1.5771
    0.0335
    0.3502
   -0.2620
   -0.8314
   -0.5336
    0.5201
   -0.7982
   -0.7145
   -0.5890
   -1.1201
    0.3075
   -0.1765
   -2.3299
    0.3914
    0.1837
   -1.3617
   -0.3349
   -1.1176
   -0.0679
   -0.3031
    0.8261
   -0.2097
   -1.0298
    0.1352
   -0.9415
   -0.5320
   -0.4838
   -0.1922
   -0.2490
    1.2347
   -0.4446
   -0.2612
   -1.2507
   -0.5078
   -3.0292
   -1.0667
   -0.0290
   -0.0845
    0.0414
    0.2323
   -0.2365
    2.2294
   -1.6642
    0.4227
   -1.2128
    0.3271
   -0.6509
   -1.3218
   -0.0549
    0.3502
    0.2398
    1.1921
   -1.9488
    0.0012
    0.5812
    0.0799
Z(:,:,3) =
    0.3188
    0.3426
   -1.3499
   -0.0631
   -0.1241
    1.4172
    0.7172
    1.0347
    0.2939
   -1.1471
   -2.9443
   -0.7549
   -0.1022
    0.3129
   -0.1649
    1.1093
   -1.2141
    1.5326
   -0.2256
    0.0326
    1.5442
   -0.7423
   -0.6156
    0.8886
   -1.4224
   -0.1961
    0.1978
    0.6966
    0.2157
    0.1049
   -0.6669
   -1.9330
    0.8404
   -0.5445
    0.4900
   -0.1941
    1.3546
    0.1240
   -0.1977
    0.8252
   -0.4686
   -0.2779
   -0.3538
    0.5080
   -1.3337
   -0.2991
   -1.7502
   -0.9792
   -2.0026
   -0.0200
    1.0187
    1.3514
   -0.2938
    2.5260
   -1.2571
    0.7914
   -1.4491
    0.4517
   -0.4762
    0.4550
    0.5528
    1.2607
   -0.1952
    0.0230
    1.5270
    0.6252
    0.9492
    0.5152
   -0.1623
    1.6821
   -0.7120
   -0.2741
   -1.0642
   -0.2296
   -0.1559
    0.4434
   -0.9480
   -0.3206
   -0.4570
    0.9337
    0.1825
    1.6039
   -0.7342
    0.4264
    2.0237
    0.3376
   -0.5900
   -1.6702
    0.0662
    1.0826
    0.2571
    0.9248
    0.9111
    1.2503
   -0.6904
   -1.6118
    1.0205
   -0.0708
   -2.1924
   -0.9485
N = 
N(:,:,1) =
     3
     1
     2
     1
     0
     2
     0
     1
     3
     4
     2
     1
     0
     1
     1
     1
     1
     0
     0
     3
     2
     2
     1
     0
     1
     1
     3
     3
     4
     2
     4
     1
     1
     2
     0
     2
     2
     3
     2
     1
     3
     2
     2
     1
     1
     1
     3
     0
     2
     2
     1
     0
     1
     1
     1
     1
     0
     2
     2
     1
     1
     5
     7
     3
     2
     2
     1
     3
     3
     5
     3
     0
     1
     6
     2
     0
     5
     2
     2
     1
     2
     1
     3
     0
     2
     4
     2
     2
     4
     2
     3
     1
     2
     5
     1
     0
     3
     3
     1
     1
N(:,:,2) =
     4
     2
     2
     2
     0
     4
     1
     2
     3
     1
     2
     1
     4
     2
     6
     2
     2
     2
     2
     1
     4
     3
     1
     3
     3
     1
     3
     6
     1
     4
     2
     2
     1
     2
     1
     1
     5
     0
     2
     2
     3
     2
     2
     1
     0
     1
     5
     4
     0
     1
     1
     2
     1
     2
     3
     2
     2
     1
     2
     2
     0
     3
     1
     6
     3
     3
     0
     2
     1
     2
     0
     6
     1
     3
     1
     2
     2
     2
     1
     0
     2
     2
     2
     2
     1
     1
     3
     1
     2
     2
     1
     4
     1
     3
     3
     0
     1
     1
     1
     2
N(:,:,3) =
     1
     3
     2
     2
     1
     4
     2
     3
     0
     0
     4
     3
     2
     3
     1
     1
     1
     1
     3
     4
     1
     2
     3
     1
     1
     1
     1
     0
     3
     0
     1
     0
     4
     0
     2
     4
     3
     1
     0
     1
     5
     3
     3
     2
     1
     2
     3
     1
     5
     4
     1
     1
     2
     2
     1
     1
     1
     2
     1
     5
     1
     2
     1
     3
     2
     2
     1
     3
     1
     6
     0
     1
     4
     1
     1
     3
     5
     3
     1
     2
     2
     1
     2
     1
     1
     1
     1
     1
     2
     3
     6
     2
     1
     3
     2
     1
     1
     0
     1
     3
This example shows how to use simBySolution with a Merton model to perform a quasi-Monte Carlo simulation. Quasi-Monte Carlo simulation is a Monte Carlo simulation that uses quasi-random sequences instead pseudo random numbers.
Create a merton object.
AssetPrice = 80;
Return = 0.03;
Sigma = 0.16;
JumpMean = 0.02;
JumpVol = 0.08;
JumpFreq = 2;
            
Merton = merton(Return,Sigma,JumpFreq,JumpMean,JumpVol,'startstat',AssetPrice)Merton = 
   Class MERTON: Merton Jump Diffusion
   ----------------------------------------
     Dimensions: State = 1, Brownian = 1
   ----------------------------------------
      StartTime: 0
     StartState: 80
    Correlation: 1
          Drift: drift rate function F(t,X(t)) 
      Diffusion: diffusion rate function G(t,X(t)) 
     Simulation: simulation method/function simByEuler
          Sigma: 0.16
         Return: 0.03
       JumpFreq: 2
       JumpMean: 0.02
        JumpVol: 0.08
Perform a quasi-Monte Carlo simulation by using simBySolution with the optional name-value arguments for 'MonteCarloMethod','QuasiSequence', and 'BrownianMotionMethod'. 
[paths,time,z,n] = simBySolution(Merton, 10,'ntrials',4096,'montecarlomethod','quasi','QuasiSequence','sobol','BrownianMotionMethod','brownian-bridge');
Input Arguments
Merton model, specified as a merton object. You can
                        create a merton object using merton.
Data Types: object
Number of simulation periods, specified as a positive scalar integer. The
                        value of NPeriods determines the number of rows of the
                        simulated output series.
Data Types: double
Name-Value Arguments
Specify optional pairs of arguments as
      Name1=Value1,...,NameN=ValueN, where Name is
      the argument name and Value is the corresponding value.
      Name-value arguments must appear after other arguments, but the order of the
      pairs does not matter.
    
      Before R2021a, use commas to separate each name and value, and enclose 
      Name in quotes.
    
Example: [Paths,Times,Z,N] =
                    simBySolution(merton,NPeriods,'DeltaTime',dt,'NNTrials',10)
Simulated NTrials (sample paths) of NPeriods
                            observations each, specified as the comma-separated pair consisting of
                                'NNTrials' and a positive scalar integer.
Data Types: double
Positive time increments between observations, specified as the
                            comma-separated pair consisting of 'DeltaTime' and a
                            scalar or an NPeriods-by-1 column
                            vector.
                            DeltaTime represents the familiar
                                dt found in stochastic differential equations,
                            and determines the times at which the simulated paths of the output
                            state variables are reported.
Data Types: double
Number of intermediate time steps within each time increment
                                dt (specified as DeltaTime),
                            specified as the comma-separated pair consisting of
                                'NSteps' and a positive scalar integer.
The simBySolution function partitions each time
                            increment dt into NSteps
                            subintervals of length dt/NSteps,
                            and refines the simulation by evaluating the simulated state vector at
                                NSteps − 1 intermediate points. Although
                                simBySolution does not report the output state
                            vector at these intermediate points, the refinement improves accuracy by
                            allowing the simulation to more closely approximate the underlying
                            continuous-time process.
Data Types: double
Flag to use antithetic sampling to generate the Gaussian random
                            variates that drive the Brownian motion vector (Wiener processes),
                            specified as the comma-separated pair consisting of
                                'Antithetic' and a scalar numeric or logical
                                1 (true) or
                                0 (false).
When you specify true,
                                simBySolution performs sampling such that all
                            primary and antithetic paths are simulated and stored in successive
                            matching pairs:
Odd NTrials
(1,3,5,...)correspond to the primary Gaussian paths.Even NTrials
(2,4,6,...)are the matching antithetic paths of each pair derived by negating the Gaussian draws of the corresponding primary (odd) trial.
Note
If you specify an input noise process (see
                                Z), simBySolution ignores
                                the value of Antithetic.
Data Types: logical
Monte Carlo method to simulate stochastic processes, specified as the
                            comma-separated pair consisting of 'MonteCarloMethod'
                            and a string or character vector with one of the following values:
"standard"— Monte Carlo using pseudo random numbers"quasi"— Quasi-Monte Carlo using low-discrepancy sequences"randomized-quasi"— Randomized quasi-Monte Carlo
Data Types: string | char
Low discrepancy sequence to drive the stochastic processes, specified
                            as the comma-separated pair consisting of
                                'QuasiSequence' and a string or character vector
                            with the following value:
"sobol"— Quasi-random low-discrepancy sequences that use a base of two to form successively finer uniform partitions of the unit interval and then reorder the coordinates in each dimension
Note
If
MonteCarloMethodoption is not specified or specified as"standard",QuasiSequenceis ignored.If you specify an input noise process (see
Z),simBySolutionignores the value ofQuasiSequence.
Data Types: string | char
Brownian motion construction method, specified as the comma-separated
                            pair consisting of 'BrownianMotionMethod' and a
                            string or character vector with one of the following values:
"standard"— The Brownian motion path is found by taking the cumulative sum of the Gaussian variates."brownian-bridge"— The last step of the Brownian motion path is calculated first, followed by any order between steps until all steps have been determined."principal-components"— The Brownian motion path is calculated by minimizing the approximation error.
Note
If an input noise process is specified using the
                                    Z input argument,
                                    BrownianMotionMethod is ignored.
The starting point for a Monte Carlo simulation is the construction of a Brownian motion sample path (or Wiener path). Such paths are built from a set of independent Gaussian variates, using either standard discretization, Brownian-bridge construction, or principal components construction.
Both standard discretization and Brownian-bridge construction share
                            the same variance and, therefore, the same resulting convergence when
                            used with the MonteCarloMethod using pseudo random
                            numbers. However, the performance differs between the two when the
                                MonteCarloMethod option
                                "quasi" is introduced, with faster convergence
                            for the "brownian-bridge" construction option and the
                            fastest convergence for the "principal-components"
                            construction option.
Data Types: string | char
Direct specification of the dependent random noise process for
                            generating the Brownian motion vector (Wiener process) that drives the
                            simulation, specified as the comma-separated pair consisting of
                                'Z' and a function or an (NPeriods *
                                NSteps)-by-NBrowns-by-NNTrials
                            three-dimensional array of dependent random variates.
The input argument Z allows you to directly specify
                            the noise generation process. This process takes precedence over the
                                Correlation parameter of the input merton object and the
                            value of the Antithetic input flag. 
Specifically, when Z is specified,
                                Correlation is not explicitly used to generate
                            the Gaussian variates that drive the Brownian motion. However,
                                Correlation is still used in the expression that
                            appears in the exponential term of the
                                    log[Xt]
                            Euler scheme. Thus, you must specify Z as a
                            correlated Gaussian noise process whose correlation structure is
                            consistently captured by Correlation.
Note
If you specify Z as a function, it must return
                                an NBrowns-by-1 column vector,
                                and you must call it with two inputs: 
A real-valued scalar observation time t
An
NVars-by-1state vector Xt
Data Types: double | function
Dependent random counting process for generating the number of jumps,
                            specified as the comma-separated pair consisting of
                                'N' and a function or an
                                (NPeriods ⨉ NSteps)
                                -by-NJumps-by-NNTrials
                            three-dimensional array of dependent random variates. If you specify a
                            function, N must return an
                                NJumps-by-1 column vector, and
                            you must call it with two inputs: a real-valued scalar observation time
                                t followed by an
                                NVars-by-1 state vector
                                    Xt.
Data Types: double | function
Flag that indicates how the output array Paths is
                            stored and returned, specified as the comma-separated pair consisting of
                                'StorePaths' and a scalar numeric or logical
                                1 (true) or
                                0 (false).
If
StorePathsistrue(the default value) or is unspecified,simBySolutionreturnsPathsas a three-dimensional time series array.If
StorePathsisfalse(logical0),simBySolutionreturnsPathsas an empty matrix.
Data Types: logical
Sequence of end-of-period processes or state vector adjustments,
                            specified as the comma-separated pair consisting of
                                'Processes' and a function or cell array of
                            functions of the form 
simBySolution applies processing functions at the
                            end of each observation period. These functions must accept the current
                            observation time t and the current state vector
                                Xt, and
                            return a state vector that can be an adjustment to the input
                            state.
The end-of-period Processes argument allows you to
                            terminate a given trial early. At the end of each time step,
                                simBySolution tests the state vector
                                        Xt
                            for an all-NaN condition. Thus, to signal an early
                            termination of a given trial, all elements of the state vector
                                        Xt
                            must be NaN. This test enables a user-defined
                                Processes function to signal early termination of
                            a trial, and offers significant performance benefits in some situations
                            (for example, pricing down-and-out barrier options).
If you specify more than one processing function,
                                simBySolution invokes the functions in the order
                            in which they appear in the cell array. You can use this argument to
                            specify boundary conditions, prevent negative prices, accumulate
                            statistics, plot graphs, and more.
Data Types: cell | function
Output Arguments
Simulated paths of correlated state variables, returned as an
                            (NPeriods +
                            1)-by-NVars-by-NNTrials
                        three-dimensional time-series array.
 For a given trial, each row of Paths is the transpose
                        of the state vector
                            Xt at time
                            t. When StorePaths is set to
                            false, simBySolution returns
                            Paths as an empty matrix.
Observation times associated with the simulated paths, returned as an
                            (NPeriods + 1)-by-1 column vector.
                        Each element of Times is associated with the
                        corresponding row of Paths. 
Dependent random variates for generating the Brownian motion vector
                        (Wiener processes) that drive the simulation, returned as a
                            (NPeriods *
                            NSteps)-by-NBrowns-by-NNTrials
                        three-dimensional time-series array.
Dependent random variates for generating the jump counting process vector,
                        returned as an (NPeriods ⨉
                            NSteps)-by-NJumps-by-NNTrials
                        three-dimensional time-series array.
More About
Simulation methods allow you to specify a popular variance reduction technique called antithetic sampling.
This technique attempts to replace one sequence of random observations with another that has the same expected value but a smaller variance. In a typical Monte Carlo simulation, each sample path is independent and represents an independent trial. However, antithetic sampling generates sample paths in pairs. The first path of the pair is referred to as the primary path, and the second as the antithetic path. Any given pair is independent other pairs, but the two paths within each pair are highly correlated. Antithetic sampling literature often recommends averaging the discounted payoffs of each pair, effectively halving the number of Monte Carlo NTrials.
This technique attempts to reduce variance by inducing negative dependence between paired input samples, ideally resulting in negative dependence between paired output samples. The greater the extent of negative dependence, the more effective antithetic sampling is.
Algorithms
The simBySolution function simulates the state vector
                    Xt by an approximation of the
            closed-form solution of diagonal drift Merton jump diffusion models. Specifically, it
            applies a Euler approach to the transformed
                    log[Xt] process
            (using Ito's formula). In general, this is not the exact solution to the Merton jump
            diffusion model because the probability distributions of the simulated and true state
            vectors are identical only for piecewise constant parameters. 
This function simulates any vector-valued merton process of the
            form
Here:
Xt is an
NVars-by-1state vector of process variables.B(t,Xt) is an
NVars-by-NVarsmatrix of generalized expected instantaneous rates of return.D(t,Xt)is anNVars-by-NVarsdiagonal matrix in which each element along the main diagonal is the corresponding element of the state vector.V(t,Xt)is anNVars-by-NVarsmatrix of instantaneous volatility rates.dWt is an
NBrowns-by-1Brownian motion vector.Y(t,Xt,Nt)is anNVars-by-NJumpsmatrix-valued jump size function.dNt is an
NJumps-by-1counting process vector.
References
[1] Aït-Sahalia, Yacine. “Testing Continuous-Time Models of the Spot Interest Rate.” Review of Financial Studies, Vol. 9, No. 2 ( Apr. 1996): 385–426.
[2] Aït-Sahalia, Yacine. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.” The Journal of Finance, Vol. 54, No. 4 (Aug. 1999): 1361–95.
[3] Glasserman, Paul. Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.
[4] Hull, John C. Options, Futures and Other Derivatives, 7th ed, Prentice Hall, 2009.
[5] Johnson, Norman Lloyd, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous Univariate Distributions, 2nd ed. Wiley Series in Probability and Mathematical Statistics. New York: Wiley, 1995.
[6] Shreve, Steven E. Stochastic Calculus for Finance, New York: Springer-Verlag, 2004.
Version History
Introduced in R2020aPerform Brownian bridge and principal components construction using the name-value
                argument BrownianMotionMethod.
Perform Quasi-Monte Carlo simulation using the name-value arguments
                    MonteCarloMethod and
                QuasiSequence.
See Also
Topics
- Simulating Equity Prices
 - Simulating Interest Rates
 - Stratified Sampling
 - Price American Basket Options Using Standard Monte Carlo and Quasi-Monte Carlo Simulation
 - Base SDE Models
 - Drift and Diffusion Models
 - Linear Drift Models
 - Parametric Models
 - SDEs
 - SDE Models
 - SDE Class Hierarchy
 - Quasi-Monte Carlo Simulation
 - Performance Considerations
 
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleziona un sito web
Seleziona un sito web per visualizzare contenuto tradotto dove disponibile e vedere eventi e offerte locali. In base alla tua area geografica, ti consigliamo di selezionare: .
Puoi anche selezionare un sito web dal seguente elenco:
Come ottenere le migliori prestazioni del sito
Per ottenere le migliori prestazioni del sito, seleziona il sito cinese (in cinese o in inglese). I siti MathWorks per gli altri paesi non sono ottimizzati per essere visitati dalla tua area geografica.
Americhe
- América Latina (Español)
 - Canada (English)
 - United States (English)
 
Europa
- Belgium (English)
 - Denmark (English)
 - Deutschland (Deutsch)
 - España (Español)
 - Finland (English)
 - France (Français)
 - Ireland (English)
 - Italia (Italiano)
 - Luxembourg (English)
 
- Netherlands (English)
 - Norway (English)
 - Österreich (Deutsch)
 - Portugal (English)
 - Sweden (English)
 - Switzerland
 - United Kingdom (English)