finportfolio
Create a finportfolio
object
Description
Create a finportfolio
object for a collection of instrument
objects.
After creating instruments, models, and pricer objects, use
finportfolio
to create a finportfolio
object
for a collection of instruments. For more detailed information on this workflow, see
Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
For more information on the available instruments, models, and pricing methods, see Choose Instruments, Models, and Pricers.
Creation
Syntax
Description
creates an empty finportfolio_obj
= finportfoliofinportfolio
object.
creates a finportfolio_obj
= finportfolio(inInstruments
)finportfolio
object containing the instrument
objects inInstruments
.
creates a finportfolio_obj
= finportfolio(inInstruments
,inPricers
)finportfolio
object containing the instrument
objects inInstruments
and the pricer objects
inPricers
.
optionally sets the finportfolio_obj
= finportfolio(___,inQuant
)inQuant
property which specifies
the number of instruments. Use this syntax with any of the input argument
combinations in previous syntaxes to set the properties for the
finportfolio
object. For example,
finportfolio_obj =
finportfolio([CapObj,FloorObj,SwaptionObj],[BlackPricerObj,NormalPricerObj,SabrPricerObj])
creates a finportfolio
object that contains instrument
and pricer objects.
Input Arguments
Instrument objects in the portfolio, specified as a scalar Instrument object or an array of Instrument objects.
Data Types: object
Pricer objects in the portfolio, specified as a scalar Pricer object or an array of Pricer objects.
Data Types: object
Number of instruments, specified as a scalar numeric or an
NINST
-by-1
array of numeric
values. Use a positive value for long positions and a negative value for
short positions.
Data Types: double
Output Arguments
Collection of instrument objects, returned as a
finportfolio
object.
Properties
Instrument objects in the portfolio, returned as a scalar instrument object or an array of instrument objects.
Data Types: struct
Pricer objects in the portfolio, returned as a scalar pricer object or an array of pricer objects.
Data Types: struct
This property is read-only.
Mapping of instrument objects to pricer objects in the portfolio, returned as numeric.
PricerIndex
has a length equal to the number of
instrument objects in the finportfolio
object and stores
an index of which pricer is used for each instrument object.
Data Types: struct
Number of instruments, returned as a scalar numeric or numeric array.
Data Types: double
Object Functions
pricePortfolio | Compute price and sensitivities for portfolio of instruments |
addInstrument | Add instrument to portfolio of instruments |
removeInstrument | Remove instrument from portfolio of instruments |
setPricer | Set pricer for finportfolio object |
Examples
Use finportfolio
and pricePortfolio
to create and price a portfolio containing a FixedBond
instrument and an American Vanilla
option instrument.
Create FixedBond
Instrument Object
Use fininstrument
to create a FixedBond
instrument object.
FixB = fininstrument("FixedBond",'Maturity',datetime(2022,9,15),'CouponRate',0.05,'Name',"fixed_bond")
FixB = FixedBond with properties: CouponRate: 0.0500 Period: 2 Basis: 0 EndMonthRule: 1 Principal: 100 DaycountAdjustedCashFlow: 0 BusinessDayConvention: "actual" Holidays: NaT IssueDate: NaT FirstCouponDate: NaT LastCouponDate: NaT StartDate: NaT Maturity: 15-Sep-2022 Name: "fixed_bond"
Create ratecurve
Object
Create a ratecurve
object using ratecurve
.
Settle = datetime(2018,9,15); Type = 'zero'; ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC = ratecurve with properties: Type: "zero" Compounding: -1 Basis: 0 Dates: [10×1 datetime] Rates: [10×1 double] Settle: 15-Sep-2018 InterpMethod: "linear" ShortExtrapMethod: "next" LongExtrapMethod: "previous"
Create Discount
Pricer Object for FixedBond
Instrument
Use finpricer
to create a Discount
pricer object and use the ratecurve
object for the 'DiscountCurve'
name-value pair argument.
FBPricer = finpricer("Discount",'DiscountCurve',myRC)
FBPricer = Discount with properties: DiscountCurve: [1×1 ratecurve]
Create Vanilla
Instrument Object
Use fininstrument
to create an American Vanilla
instrument object.
Maturity = datetime(2023,9,15); AmericanOpt = fininstrument("Vanilla",'ExerciseDate',Maturity,'Strike',120,'ExerciseStyle',"american",'Name',"vanilla_option")
AmericanOpt = Vanilla with properties: OptionType: "call" ExerciseStyle: "american" ExerciseDate: 15-Sep-2023 Strike: 120 Name: "vanilla_option"
Create BlackScholes
Model Object for Vanilla
Instrument
Use finmodel
to create a BlackScholes
model object.
BSModel = finmodel("BlackScholes",'Volatility',0.12)
BSModel = BlackScholes with properties: Volatility: 0.1200 Correlation: 1
Create BjerksundStensland
Pricer Object for Vanilla
Instrument
Use finpricer
to create an analytic pricer object for the BjerksundStensland
pricing method and use the ratecurve
object for the 'DiscountCurve'
name-value pair argument.
BJSPricer = finpricer("analytic",'Model',BSModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendValue',.02,'PricingMethod',"BjerksundStensland")
BJSPricer = BjerksundStensland with properties: DiscountCurve: [1×1 ratecurve] Model: [1×1 finmodel.BlackScholes] SpotPrice: 100 DividendValue: 0.0200 DividendType: "continuous"
Add the Instruments to a finportfolio
Object
Create a finportfolio
object using finportfolio
and add the two instruments with their associated pricers to the portfolio.
f1 = finportfolio([AmericanOpt,FixB],[BJSPricer,FBPricer])
f1 = finportfolio with properties: Instruments: [2×1 fininstrument.FinInstrument] Pricers: [2×1 finpricer.FinPricer] PricerIndex: [2×1 double] Quantity: [2×1 double]
Price Portfolio
Use pricePortfolio
to compute the price and sensitivities for the portfolio and the instruments in the portfolio.
[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(f1)
PortPrice = 119.1665
InstPrice = 2×1
3.1912
115.9753
PortSens=1×8 table
Price DV01 Delta Gamma Lambda Vega Theta Rho
______ _______ _______ ________ ______ ______ ________ _____
119.17 0.04295 0.23188 0.011522 7.2661 65.454 -0.81408 86.71
InstSens=2×8 table
Price DV01 Delta Gamma Lambda Vega Theta Rho
______ _______ _______ ________ ______ ______ ________ _____
vanilla_option 3.1912 NaN 0.23188 0.011522 7.2661 65.454 -0.81408 86.71
fixed_bond 115.98 0.04295 NaN NaN NaN NaN NaN NaN
This example shows the workflow to create and price a portfolio of bond and bond option instruments. You can use finportfolio
and pricePortfolio
to price FixedBond
, FixedBondOption
, OptionEmbeddedFixedBond
, and FloatBond
instruments using an IRTree
pricing method.
Create ratecurve
Object
Create a ratecurve
object using ratecurve
.
Settle = datetime(2018, 1, 1); ZeroTimes = calyears(1:4)'; ZeroRates = [0.035; 0.042147; 0.047345; 0.052707]; ZeroDates = Settle + ZeroTimes; Compounding = 1; ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding)
ZeroCurve = ratecurve with properties: Type: "zero" Compounding: 1 Basis: 0 Dates: [4×1 datetime] Rates: [4×1 double] Settle: 01-Jan-2018 InterpMethod: "linear" ShortExtrapMethod: "next" LongExtrapMethod: "previous"
Create Bond and Option Instruments
Use fininstrument
to create a FixedBond
, FixedBondOption
, OptionEmbeddedFixedBond
, and FloatBond
instrument objects.
CDates = datetime([2020,1,1 ; 2022,1,1]); CRates = [.0425; .0750]; CouponRate = timetable(CDates,CRates); Maturity = datetime(2022,1,1); Period = 1; % Vanilla FixedBond VBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',0.0425,'Period',Period,'Name',"vanilla_fixed")
VBond = FixedBond with properties: CouponRate: 0.0425 Period: 1 Basis: 0 EndMonthRule: 1 Principal: 100 DaycountAdjustedCashFlow: 0 BusinessDayConvention: "actual" Holidays: NaT IssueDate: NaT FirstCouponDate: NaT LastCouponDate: NaT StartDate: NaT Maturity: 01-Jan-2022 Name: "vanilla_fixed"
% Stepped coupon bond SBond = fininstrument("FixedBond",'Maturity',Maturity,'CouponRate',CouponRate,'Period',Period,'Name',"stepped_coupon_bond")
SBond = FixedBond with properties: CouponRate: [2×1 timetable] Period: 1 Basis: 0 EndMonthRule: 1 Principal: 100 DaycountAdjustedCashFlow: 0 BusinessDayConvention: "actual" Holidays: NaT IssueDate: NaT FirstCouponDate: NaT LastCouponDate: NaT StartDate: NaT Maturity: 01-Jan-2022 Name: "stepped_coupon_bond"
% FloatBond Spread = 0; Reset = 1; Float = fininstrument("FloatBond",'Maturity',Maturity,'Spread',Spread,'Reset', Reset, ... 'ProjectionCurve',ZeroCurve,'Name',"floatbond")
Float = FloatBond with properties: Spread: 0 ProjectionCurve: [1×1 ratecurve] ResetOffset: 0 Reset: 1 Basis: 0 EndMonthRule: 1 Principal: 100 DaycountAdjustedCashFlow: 0 BusinessDayConvention: "actual" LatestFloatingRate: NaN Holidays: NaT IssueDate: NaT FirstCouponDate: NaT LastCouponDate: NaT StartDate: NaT Maturity: 01-Jan-2022 Name: "floatbond"
% Call option Strike = 100; ExerciseDates = datetime(2020,1,1); OptionType ='call'; Period = 1; CallOption = fininstrument("FixedBondOption",'Strike',Strike,'ExerciseDate',ExerciseDates, ... 'OptionType',OptionType,'ExerciseStyle',"american",'Bond', VBond,'Name',"fixed_bond_option")
CallOption = FixedBondOption with properties: OptionType: "call" ExerciseStyle: "american" ExerciseDate: 01-Jan-2020 Strike: 100 Bond: [1×1 fininstrument.FixedBond] Name: "fixed_bond_option"
% Option for embedded bond (callable bond) CDates = datetime([2020,1,1 ; 2022,1,1]); CRates = [.0425; .0750]; CouponRate = timetable(CDates,CRates); StrikeOE = [100; 100]; ExerciseDatesOE = [datetime(2020,1,1); datetime(2021,1,1)]; CallSchedule = timetable(ExerciseDatesOE,StrikeOE,'VariableNames',{'Strike Schedule'}); CallableBond = fininstrument("OptionEmbeddedFixedBond", 'Maturity',Maturity, ... 'CouponRate',CouponRate,'Period', Period, ... 'CallSchedule',CallSchedule,'Name',"option_embedded_fixedbond")
CallableBond = OptionEmbeddedFixedBond with properties: CouponRate: [2×1 timetable] Period: 1 Basis: 0 EndMonthRule: 1 Principal: 100 DaycountAdjustedCashFlow: 0 BusinessDayConvention: "actual" Holidays: NaT IssueDate: NaT FirstCouponDate: NaT LastCouponDate: NaT StartDate: NaT Maturity: 01-Jan-2022 CallDates: [2×1 datetime] PutDates: [0×1 datetime] CallSchedule: [2×1 timetable] PutSchedule: [0×0 timetable] CallExerciseStyle: "american" PutExerciseStyle: [0×0 string] Name: "option_embedded_fixedbond"
Create HullWhite
Model
Use finmodel
to create a HullWhite
model object.
VolCurve = 0.01; AlphaCurve = 0.1; HWModel = finmodel("hullwhite",'alpha',AlphaCurve,'sigma',VolCurve)
HWModel = HullWhite with properties: Alpha: 0.1000 Sigma: 0.0100
Create IRTree
Pricer for HullWhite
Model
Use finpricer
to create an IRTree
pricer object for a HullWhite
model and use the ratecurve
object for the 'DiscountCurve'
name-value pair argument.
HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)
HWTreePricer = HWBKTree with properties: Tree: [1×1 struct] TreeDates: [4×1 datetime] Model: [1×1 finmodel.HullWhite] DiscountCurve: [1×1 ratecurve]
Create finportfolio
Object and Add Callable Bond Instrument
Create a finportfolio
object with the vanilla bond, stepped coupon bond, float bond, and the call option.
myportfolio = finportfolio([VBond,SBond,Float,CallOption],HWTreePricer, [1,2,2,1])
myportfolio = finportfolio with properties: Instruments: [4×1 fininstrument.FinInstrument] Pricers: [1×1 finpricer.irtree.HWBKTree] PricerIndex: [4×1 double] Quantity: [4×1 double]
Use addInstrument
to add the callable bond instrument to the existing portfolio.
myportfolio = addInstrument(myportfolio,CallableBond,HWTreePricer,1)
myportfolio = finportfolio with properties: Instruments: [5×1 fininstrument.FinInstrument] Pricers: [1×1 finpricer.irtree.HWBKTree] PricerIndex: [5×1 double] Quantity: [5×1 double]
myportfolio.PricerIndex
ans = 5×1
1
1
1
1
1
The PricerIndex
property has a length equal to the length of instrument objects in the finportfolio
object and stores the index of which pricer is used for each instrument object. In this case, because there is only one pricer, each instrument must use that pricer.
Price Portfolio
Use pricePortfolio
to compute the price and sensitivities for the portfolio and the bond and option instruments in the portfolio.
format bank
[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(myportfolio)
PortPrice = 600.55
InstPrice = 5×1
96.59
204.14
200.00
0.05
99.77
PortSens=1×4 table
Price Delta Gamma Vega
______ ________ _______ ______
600.55 -1297.48 5759.65 -63.40
InstSens=5×4 table
Price Delta Gamma Vega
______ _______ _______ ______
vanilla_fixed 96.59 -344.81 1603.49 -0.00
stepped_coupon_bond 204.14 -725.96 3364.60 0.00
floatbond 200.00 0.00 -0.00 -0.00
fixed_bond_option 0.05 -3.69 24.15 12.48
option_embedded_fixedbond 99.77 -223.03 767.41 -75.88
Use finportfolio
and pricePortfolio
to create and price a portfolio containing three FixedBond
instruments and three American Vanilla
option instruments.
Create FixedBond
Instrument Object
Use fininstrument
to create a FixedBond
instrument object for three Fixed Bond instruments.
FixB = fininstrument("FixedBond",'Maturity',datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),'CouponRate',0.05,'Name',"fixed_bond")
FixB=3×1 FixedBond array with properties:
CouponRate
Period
Basis
EndMonthRule
Principal
DaycountAdjustedCashFlow
BusinessDayConvention
Holidays
IssueDate
FirstCouponDate
LastCouponDate
StartDate
Maturity
Name
Create ratecurve
Object
Create a ratecurve
object using ratecurve
.
Settle = datetime(2018,9,15); Type = 'zero'; ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC = ratecurve with properties: Type: "zero" Compounding: -1 Basis: 0 Dates: [10×1 datetime] Rates: [10×1 double] Settle: 15-Sep-2018 InterpMethod: "linear" ShortExtrapMethod: "next" LongExtrapMethod: "previous"
Create Discount
Pricer Object for FixedBond
Instruments
Use finpricer
to create a Discount
pricer object and use the ratecurve
object for the 'DiscountCurve'
name-value pair argument.
FBPricer = finpricer("Discount",'DiscountCurve',myRC)
FBPricer = Discount with properties: DiscountCurve: [1×1 ratecurve]
Create Vanilla
Instrument Object
Use fininstrument
to create an American Vanilla
instrument object for three Vanilla instruments.
Maturity = datetime([2023,9,15 ; 2023,10,15 ; 2023,11,15]); AmericanOpt = fininstrument("Vanilla",'ExerciseDate',Maturity,'Strike',120,'ExerciseStyle',"american",'Name',"vanilla_option")
AmericanOpt=3×1 Vanilla array with properties:
OptionType
ExerciseStyle
ExerciseDate
Strike
Name
Create BlackScholes
Model Object for Vanilla
Instruments
Use finmodel
to create a BlackScholes
model object.
BSModel = finmodel("BlackScholes",'Volatility',0.12)
BSModel = BlackScholes with properties: Volatility: 0.1200 Correlation: 1
Create BjerksundStensland
Pricer Object for Vanilla
Instruments
Use finpricer
to create an analytic pricer object for the BjerksundStensland
pricing method and use the ratecurve
object for the 'DiscountCurve'
name-value pair argument.
BJSPricer = finpricer("analytic",'Model',BSModel,'DiscountCurve',myRC,'SpotPrice',100,'DividendValue',.02,'PricingMethod',"BjerksundStensland")
BJSPricer = BjerksundStensland with properties: DiscountCurve: [1×1 ratecurve] Model: [1×1 finmodel.BlackScholes] SpotPrice: 100 DividendValue: 0.0200 DividendType: "continuous"
Add the Instruments to a finportfolio
Object
Create a finportfolio
object using finportfolio
and add the six instruments with their associated pricers to the portfolio.
f1 = finportfolio([AmericanOpt;FixB],[BJSPricer, BJSPricer, BJSPricer, FBPricer, FBPricer, FBPricer])
f1 = finportfolio with properties: Instruments: [6×1 fininstrument.FinInstrument] Pricers: [6×1 finpricer.FinPricer] PricerIndex: [6×1 double] Quantity: [6×1 double]
Price Portfolio
Use pricePortfolio
to compute the price and sensitivities for the portfolio and the instruments in the portfolio.
[PortPrice,InstPrice,PortSens,InstSens] = pricePortfolio(f1)
PortPrice = 358.4108
InstPrice = 6×1
3.1912
3.2579
3.3272
115.9753
116.2114
116.4478
PortSens=1×8 table
Price DV01 Delta Gamma Lambda Vega Theta Rho
______ _______ _______ ________ ______ ______ _______ ______
358.41 0.13159 0.70286 0.034471 21.572 198.96 -2.4455 266.62
InstSens=6×8 table
Price DV01 Delta Gamma Lambda Vega Theta Rho
______ ________ _______ ________ ______ ______ ________ ______
vanilla_option 3.1912 NaN 0.23188 0.011522 7.2661 65.454 -0.81408 86.71
vanilla_option_1 3.2579 NaN 0.23427 0.011494 7.1907 66.314 -0.81353 88.842
vanilla_option_2 3.3272 NaN 0.23672 0.011455 7.1147 67.196 -0.81784 91.063
fixed_bond 115.98 0.04295 NaN NaN NaN NaN NaN NaN
fixed_bond_1 116.21 0.043858 NaN NaN NaN NaN NaN NaN
fixed_bond_2 116.45 0.044786 NaN NaN NaN NaN NaN NaN
Version History
Introduced in R2020a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)