Modelli ARX non lineari
Utilizzare i modelli ARX non lineari per rappresentare le non linearità del sistema utilizzando stimatori dinamici di non linearità, come le reti wavelet, di partizione ad albero e le reti sigmoidee. Per stimare i modelli ARX non lineari, utilizzare l'app System Identification o la funzione nlarx.
App
| System Identification | Identify models of dynamic systems from measured data |
Funzioni
Blocchi
Argomenti
- What Are Nonlinear ARX Models?
Understand the structure of a nonlinear ARX model.
- Available Mapping Functions for Nonlinear ARX Models
Choose from sigmoid, wavelet, tree partition, linear, neural, and custom network nonlinearities.
- Identifying Nonlinear ARX Models
Specify the Nonlinear ARX structure, and configure the estimation algorithm.
- Train NARX Networks Using idnlarx Instead of narxnet
Use
idnlarxas a modern alternative tonarxnetfor estimating nonlinear ARX models. - NARMAX Model Identification
Generate NARMAX models using available model structures and their training algorithms.
- Validate Nonlinear ARX Models
Plot model nonlinearities, analyze residuals, and simulate and predict model output.
- Using Nonlinear ARX Models
Simulate, predict, and forecast model output, linearize nonlinear ARX models, and import estimated models into the Simulink® software.
- Linear Approximation of Nonlinear Black-Box Models
Choose the approach for computing linear approximations, compute operating points for linearization, and linearize your model.
- How the Software Computes Nonlinear ARX Model Output
How the software evaluates the output of nonlinearity estimators and uses this output to compute the model response.







