# recursiveOE

Online parameter estimation of output-error polynomial model

## Description

Use the `recursiveOE`

System object™ for parameter estimation with real-time data using an output-error model structure. If all
the data you need for estimation is available at once and you are estimating a time-invariant
model, use the offline estimation function `oe`

.

To perform parameter estimation with real-time data:

Create the

`recursiveOE`

object and set its properties.Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

## Creation

### Syntax

### Description

creates a System object for online parameter estimation of a default single-output output-error
model. The default model structure has a polynomial of order 1 and initial polynomial
coefficient values `oeobj`

= recursiveOE`eps`

.

specifies the initial coefficient values of polynomials `oeobj`

= recursiveOE([`na`

,`nb`

,`nf`

],`B0`

,`F0`

)`B`

and
`F`

by setting the `InitialB`

property to
`B0`

, and the `InitialF`

property to
`F0`

. Specify initial values to potentially avoid local minima during
estimation. If the initial values are small compared to the default
`InitialParameterCovariance`

property value and you have confidence
in your initial values, specify a smaller
`InitialParameterCovariance`

.

specifies one or more properties of the model
structure or recursive estimation algorithm using name-value arguments. For example,
`oeobj`

= recursiveOE(___,`Name=Value`

)`oeobj = recursiveOE(2,EstimationMethod="NormalizedGradient")`

creates
an estimation object that uses a normalized gradient estimation method.

Before R2021a, use commas to separate each name and value, and enclose
`Name`

in quotes. For example, ```
oeobj =
recursiveOE(2,"EstimationMethod","NormalizedGradient")
```

creates an estimation
object that uses a normalized gradient estimation method.

### Input Arguments

`nb`

— Order of polynomial *B*(*q*) + 1

`1`

(default) | nonnegative integer

Order of polynomial *B*(*q*) + 1, specified as a
nonnegative integer.

`nf`

— Order of polynomial *C*(*q*)

`1`

(default) | nonnegative integer

Order of polynomial *C*(*q*), specified as a
nonnegative integer.

`nk`

— Input-output delay

`1`

(default)

Input-output delay, specified as a nonnegative integer. `nk`

is
number of input samples that occur before the input affects the output.

## Properties

Unless otherwise indicated, properties are *nontunable*, which means you cannot change their
values after calling the object. Objects lock when you call them, and the
`release`

function unlocks them.

If a property is *tunable*, you can change its value at
any time.

For more information on changing property values, see System Design in MATLAB Using System Objects.

`B`

— Estimated coefficients of polynomial *B*(*q*)

`[]`

(default) | row vector

This property is read-only.

Estimated coefficients of the polynomial *B*(*q*),
returned as a row vector. The elements of this vector appear in order of ascending
powers of *q*^{-1}.

`B`

is initially empty when you create the object and is populated
after you run the online parameter estimation.

`F`

— Estimated coefficients of polynomial *A*(*q*)

`[]`

(default) | row vector

This property is read-only.

Estimated coefficients of the polynomial *F*(*q*),
returned as a row vector. The elements of this vector appear in order of ascending
powers of *q*^{-1}.

`F`

is initially empty when you create the object and is populated
after you run the online parameter estimation.

`InitialB`

— Initial coefficients of polynomial *B*(*q*)

`[0 eps]`

(default) | row vector

Initial values for the coefficients of polynomial
*B*(*q*) of order `nb`

– 1, specified as a row vector of length `nb`

+ `nk`

, with `nk`

leading zeros. `nk`

is the input-output delay. Specify the coefficients in order of ascending powers of
*q ^{-1}*.

If the initial guesses are much smaller than the default
`InitialParameterCovariance`

, 10000, the initial guesses are
given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

**Tunable: **Yes

`InitialF`

— Initial coefficients of polynomial *F*(*q*)

`[1 eps]`

(default) | row vector

Initial values for the coefficients of polynomial
*F*(*q*) of order `nf`

,
specified as a row vector of length `nf`

+1, with 1 as the first element. Specify the coefficients in order of
ascending powers of *q ^{-1}*.

The coefficients in `InitialF`

must define a stable discrete-time
polynomial with roots within a unit circle.

If the initial guesses are much smaller than the default
`InitialParameterCovariance`

, 10000, the initial guesses are
given less importance during estimation. In that case, specify a smaller initial
parameter covariance.

`InitialOutputs`

— Initial values of output buffer in finite-history estimation

`0`

(default) | column vector of real values

Initial values of the output buffer in finite-history estimation, specified as
`0`

or a (*W* + `nf`

)-by-1
vector, *W* is equal to `WindowLength`

.

Use this property to control the initial behavior of the algorithm.

When you set `InitialOutputs`

to `0`

, the object
populates the buffer with zeros.

If you set the initial buffer to `0`

or if the buffer does not
contain enough information, you see a warning message during the initial phase of your
estimation. The warning usually clears after a few cycles. The number of cycles required
to buffer sufficient information depends on the order of your polynomials and your input
delays. If the warning persists, evaluate the content of your signals.

**Tunable: **Yes

#### Dependencies

To enable this property, set `History`

to
`'Finite'`

.

`InitialInputs`

— Initial values of input buffer in finite-history estimation

`0`

(default) | column vector of real values

Initial values of the inputs in the finite history window, specified as
`0`

or as a
(*W*-1+max(`nb`

)+max(`nk`

))-by-*N _{u}u*
matrix, where

*W*is equal to

`WindowLength`

and
*N*is the number of inputs.

_{u}Use this property to control the initial behavior of the algorithm.

When you set `InitialInputs`

to `0`

, the object
populates the buffer with zeros.

If the initial buffer is set to `0`

or does not contain enough
information, you see a warning message during the initial phase of your estimation. The
warning should clear after a few cycles. The number of cycles it takes for sufficient
information to be buffered depends upon the order of your polynomials and your input
delays. If the warning persists, you should evaluate the content of your signals.

#### Dependencies

To enable this property, set `History`

to
`'Finite'`

.

`ParameterCovariance`

— Estimated covariance

`[]`

(default) | *N*_{p}-by-*N*_{p} symmetric positive-definite matrix

_{p}

_{p}

This property is read-only.

Estimated covariance *P* of the parameters, stored as an *N _{p}*-by-

*N*symmetric positive-definite matrix, where

_{p}*N*is the number of parameters to be estimated. The software computes

_{p}*P*assuming that the residuals (difference between estimated and measured outputs) are white noise and the variance of these residuals is 1.

The interpretation of *P* depends on your settings for the `History`

and `EstimationMethod`

properties.

If you set

`History`

to`'Infinite'`

and`EstimationMethod`

to:`'ForgettingFactor'`

—*R*_{2}**P*is approximately equal to twice the covariance matrix of the estimated parameters, where*R*_{2}is the true variance of the residuals.`'KalmanFilter'`

—*R*_{2}**P*is the covariance matrix of the estimated parameters, and*R*_{1}/*R*_{2}is the covariance matrix of the parameter changes. Here,*R*_{1}is the covariance matrix that you specify in`ProcessNoiseCovariance`

.

If

`History`

is`'Finite'`

(sliding-window estimation) —*R*_{2}*P*is the covariance of the estimated parameters. The sliding-window algorithm does not use this covariance in the parameter-estimation process. However, the algorithm does compute the covariance for output so that you can use it for statistical evaluation.

`ParameterCovariance`

is initially empty when you create the object and is populated after you run the online parameter estimation.

#### Dependencies

To enable this property, use one of the following configurations:

Set

`History`

to`'Finite'`

.Set

`History`

to`'Infinite'`

and set`EstimationMethod`

to either`'ForgettingFactor'`

or`'KalmanFilter'`

.

`InitialParameterCovariance`

— Covariance of initial parameter estimates

`10000`

(default) | positive scalar | vector of positive scalars | symmetric positive-definite matrix

Covariance of the initial parameter estimates, specified as one of these values:

Real positive scalar

*α*— Covariance matrix is an*N*-by-*N*diagonal matrix in which*α*is each diagonal element.*N*is the number of parameters to be estimated.Vector of real positive scalars [

*α*_{1},...,*α*_{N}] — Covariance matrix is an*N*-by-*N*diagonal matrix in which*α*_{1}through*α*_{N}] are the diagonal elements.*N*-by-*N*symmetric positive-definite matrix.

`InitialParameterCovariance`

represents the uncertainty in the
initial parameter estimates. For large values of
`InitialParameterCovariance`

, the software accords less importance
to the initial parameter values and more importance to the measured data during the
beginning of estimation.

**Tunable: **Yes

#### Dependency

To enable this property, use one of the following configurations:

Set

`History`

to`'Finite'`

.Set

`History`

to`'Infinite'`

and set`EstimationMethod`

to either`'ForgettingFactor'`

or`'KalmanFilter'`

.

`EstimationMethod`

— Recursive estimation algorithm

`'ForgettingFactor'`

(default) | `'KalmanFilter'`

| `'NormalizedGradient'`

| `'Gradient'`

Recursive estimation algorithm used for online estimation of model parameters, specified as one of the following:

`'ForgettingFactor'`

— Use forgetting factor algorithm for parameter estimation.`'KalmanFilter'`

— Use Kalman filter algorithm for parameter estimation.`'NormalizedGradient'`

— Use normalized gradient algorithm for parameter estimation.`'Gradient'`

— Use unnormalized gradient algorithm for parameter estimation.

Forgetting factor and Kalman filter algorithms are more computationally intensive than gradient and unnormalized gradient methods. However, the former algorithms have better convergence properties. For information about these algorithms, see Recursive Algorithms for Online Parameter Estimation.

#### Dependencies

To enable this property, set `History`

to
`'Infinite'`

`ForgettingFactor`

— Forgetting factor for parameter estimation

`1`

(default) | scalar in the range (0, 1]

Forgetting factor *λ* for parameter estimation, specified as a scalar
in the range (0, 1].

Suppose that the system remains approximately constant over
*T _{0}* samples. You can choose

*λ*to satisfy this condition:

$${T}_{0}=\frac{1}{1-\lambda}$$

Setting

*λ*to 1 corresponds to "no forgetting" and estimating constant coefficients.Setting

*λ*to a value less than 1 implies that past measurements are less significant for parameter estimation and can be "forgotten". Set*λ*to a value less than 1 to estimate time-varying coefficients.

Typical choices of *λ* are in the range [0.98, 0.995].

**Tunable: **Yes

#### Dependencies

To enable this property, set `History`

to
`'Infinite'`

and set `EstimationMethod`

to
`'ForgettingFactor'`

.

`EnableAdapation`

— Option to enable or disable parameter estimation

`true`

(default) | `false`

Option to enable or disable parameter estimation, specified as one of the following:

`true`

— The`step`

function estimates the parameter values for that time step and updates the parameter values.`false`

— The`step`

function does not update the parameters for that time step and instead outputs the last estimated value. You can use this option when your system enters a mode where the parameter values do not vary with time.**Note**If you set

`EnableAdapation`

to`false`

, you must still execute the`step`

command. Do not skip`step`

to keep parameter values constant, because parameter estimation depends on current and past I/O measurements.`step`

ensures past I/O data is stored, even when it does not update the parameters.

**Tunable: **Yes

`DataType`

— Floating point precision of parameters

`'double'`

(default) | `'single'`

This property is read-only.

Floating point precision of parameters, specified as one of the following values:

`'double'`

— Double-precision floating point`'single'`

— Single-precision floating point

Setting `DataType`

to `'single'`

saves memory but
leads to loss of precision. Specify `DataType`

based on the precision
required by the target processor where you will deploy generated code.

You must set `DataType`

during object creation using a name-value
argument.

`ProcessNoiseCovariance`

— Covariance matrix of parameter variations

`0.1`

(default) | nonegative scalar | vector of nonegative values | *N*-by-*N* symmetric positive semidefinite
matrix

Covariance matrix of parameter variations, specified as one of the following:

Real nonnegative scalar,

*α*— Covariance matrix is an*N*-by-*N*diagonal matrix, with*α*as the diagonal elements.Vector of real nonnegative scalars, [

*α*_{1},...,*α*_{N}] — Covariance matrix is an*N*-by-*N*diagonal matrix, with [*α*_{1},...,*α*_{N}] as the diagonal elements.*N*-by-*N*symmetric positive semidefinite matrix.

*N* is the number of parameters to
be estimated.

The Kalman filter algorithm treats the parameters as states of a dynamic system and
estimates these parameters using a Kalman filter.
`ProcessNoiseCovariance`

is the covariance of the process noise
acting on these parameters. Zero values in the noise covariance matrix correspond to
estimating constant coefficients. Values larger than 0 correspond to time-varying
parameters. Use large values for rapidly changing parameters. However, the larger values
result in noisier parameter estimates.

**Tunable: **Yes

#### Dependencies

To enable this property, set `History`

to
`'Infinite'`

and set `EstimationMethod`

to
`'KalmanFilter'`

.

`AdaptationGain`

— Adaptation gain

`1`

(default) | positive scalar

Adaptation gain, *γ*, used in gradient recursive estimation
algorithms, specified as a positive scalar.

Specify a large value for `AdaptationGain`

when your measurements
have a high signal-to-noise ratio.

**Tunable: **Yes

#### Dependencies

To enable this property, set `History`

to
`'Infinite'`

and set `EstimationMethod`

to
either `'Gradient'`

or
`'NormalizedGradient'`

.

`NormalizationBias`

— Bias in adaptation gain scaling

`eps`

(default) | nonegative scalar

Bias in adaptation gain scaling used in the `'NormalizedGradient'`

method, specified as a nonnegative scalar.

The normalized gradient algorithm divides the adaptation gain at each step by the
square of the two-norm of the gradient vector. If the gradient is close to zero, this
division can cause jumps in the estimated parameters.
`NormalizationBias`

is the term introduced in the denominator to
prevent such jumps. If you observe jumps in estimated parameters, increase
`NormalizationBias`

.

**Tunable: **Yes

#### Dependencies

To enable this property, set `History`

to
`'Infinite'`

and set `EstimationMethod`

to
`'NormalizedGradient'`

.

`History`

— Data history type

`'Infinite'`

(default) | `'Finite'`

This property is read-only.

Data history type, which defines the type of recursive algorithm to use, specified as one of the following:

`'Infinite'`

— Use an algorithm that aims to minimize the error between the observed and predicted outputs for all time steps from the beginning of the simulation.`'Finite'`

— Use an algorithm that aims to minimize the error between the observed and predicted outputs for a finite number of past time steps.

Algorithms with infinite history aim to produce parameter estimates that explain all data since the start of the simulation. These algorithms still use a fixed amount of memory that does not grow over time. To select an infinite-history algorithm, use `EstimationMethod`

.

Algorithms with finite history aim to produce parameter estimates that explain only a finite number of past data samples. This method is also called *sliding-window* estimation. The object provides one finite-history algorithm. To define the window size, specify the `WindowLength`

property.

For more information on recursive estimation methods, see Recursive Algorithms for Online Parameter Estimation.

You must set `History`

during object creation using a name-value argument.

`WindowLength`

— Window size

`200`

(default) | positive integer

This property is read-only.

Window size for finite-history estimation, specified as a positive integer indicating the number of samples..

Choose a window size that balances estimation performance with computational and memory burden. Sizing factors include the number and time variance of the parameters in your model. `WindowLength`

must be greater than or equal to the number of estimated parameters.

Suitable window length is independent of whether you are using sample-based or frame-based input processing (see `InputProcessing`

). However, when using frame-based processing, your window length must be greater than or equal to the number of samples (time steps) contained in the frame.

You must set `WindowLength`

during object creation using a name-value argument.

#### Dependencies

To enable this property, set `History`

to `'Finite'`

.

`InputProcessing`

— Input processing method

`'Sample-based'`

(default) | `'Frame-based'`

This property is read-only.

Input processing method, specified as one of the following:

`'Sample-based'`

— Process streamed signals one sample at a time.`'Frame-based'`

— Process streamed signals in frames that contain samples from multiple time steps. Many machine sensor interfaces package multiple samples and transmit these samples together in frames.`'Frame-based'`

processing allows you to input this data directly without having to first unpack it.

The `InputProcessing`

property impacts the dimensions for the
input and output signals when using the recursive estimator object.

`Sample-based`

`y`

,`u`

, and`estimatedOutput`

are scalars.

`Frame-based`

with*M*samples per frame`y`

,`u`

, and`estimatedOutput`

are*M*-by-1 vectors.

You must set `InputProcessing`

during object creation using a
name-value argument.

## Usage

### Description

`[`

updates and returns the parameters and output of `B`

,`F`

,`estimatedOutput`

] = oeobj(`y`

)`recursiveOE`

model
`oeobj`

online based on real-time output data `y`

and input data `u`

.

### Input Arguments

`y`

— Output data

real scalar

Output data acquired in real time, specified as a real scalar.

`u`

— Input data

real scalar

Input data acquired in real time, specified as a real scalar.

### Output Arguments

`estimatedOutput`

— Estimated output

real scalar

Estimated output, returned as a real scalar. The output is estimated using input-output estimation data, current parameter values, and the recursive estimation algorithm specified in the `recursiveOE`

System object.

## Object Functions

To use an object function, specify the
System object as the first input argument. For
example, to release system resources of a System object named `obj`

, use
this syntax:

release(obj)

## Examples

### Estimate Output-Error Polynomial Model Online

Create a System object for online parameter estimation of a Output-Error polynomial model using recursive estimation algorithms.

obj = recursiveOE;

The Output-Error model has a default structure with polynomials of order 1 and initial polynomial coefficient values, `eps`

.

Load the estimation data. In this example, use a static data set for illustration.

load iddata1 z1; output = z1.y; input = z1.u;

Estimate Output-Error model parameters online using `step`

.

for i = 1:numel(input) [B,F,EstimatedOutput] = step(obj,output(i),input(i)); end

View the current estimated values of polynomial `F`

coefficients.

obj.F

`ans = `*1×2*
1.0000 -0.7618

View the current covariance estimate of the parameters.

obj.ParameterCovariance

`ans = `*2×2*
0.0024 0.0002
0.0002 0.0001

View the current estimated output.

EstimatedOutput

EstimatedOutput = -4.1866

### Create System Object for Output-Error Model With Known Orders and Delays

Specify Output-Error polynomial model orders and delays.

nb = 1; nf = 2; nk = 1;

Create a System object for online estimation of Output-Error polynomial model with the specified orders and delays.

obj = recursiveOE([nb nf nk]);

### Create System Object for Output-Error Model With Known Initial Parameters

Specify Output-Error polynomial model orders and delays.

nb = 1; nf = 2; nk = 1;

Create a System object for online estimation of Output-Error model with known initial polynomial coefficients.

B0 = [0 1]; F0 = [1 0.7 0.8]; obj = recursiveOE([nb nf nk],B0,F0);

Specify the initial parameter covariance.

obj.InitialParameterCovariance = 0.1;

`InitialParameterCovariance`

represents the uncertainty in your guess for the initial parameters. Typically, the default `InitialParameterCovariance`

(10000) is too large relative to the parameter values. This results in initial guesses being given less importance during estimation. If you have confidence in the initial parameter guesses, specify a smaller initial parameter covariance.

### Specify Estimation Method for Online Estimation of Output-Error Model

Create a System object that uses the unnormalized gradient algorithm for online parameter estimation of an Output-Error model.

obj = recursiveOE([1 2 1],'EstimationMethod','Gradient');

## More About

### Output-Error Model Structure

The general output-error model structure is:

$$y(t)=\frac{B(q)}{F(q)}u(t-{n}_{k})+e(t)$$

The orders of the output-error model are:

$$\begin{array}{l}nb\text{:}B(q)={b}_{1}+{b}_{2}{q}^{-1}+\mathrm{...}+{b}_{nb}{q}^{-nb+1}\\ nf\text{:}F(q)=1+{f}_{1}{q}^{-1}+\mathrm{...}+{f}_{nf}{q}^{-nf}\end{array}$$

## Extended Capabilities

### C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

For Simulink-based workflows, use Recursive Polynomial Model Estimator.

For limitations, see Generate Code for Online Parameter Estimation in MATLAB.

Supports MATLAB Function block: No

## Version History

**Introduced in R2015b**

## See Also

### Functions

### Objects

### Blocks

## Comando MATLAB

Hai fatto clic su un collegamento che corrisponde a questo comando MATLAB:

Esegui il comando inserendolo nella finestra di comando MATLAB. I browser web non supportano i comandi MATLAB.

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list:

## How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

### Americas

- América Latina (Español)
- Canada (English)
- United States (English)

### Europe

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)