radiomics
Description
The radiomics
object and its object functions enable you to
preprocess a medical image of any modality, such as MRI, CT, and ultrasound, and compute shape
features, intensity features, and texture features from a specified region of interest (ROI).
You can use the same set of radiomics features for any medical imaging modality, and for
applications such as studying associations between medical imaging features and patient
biology or predicting clinical outcomes from medical images. The radiomics features computed
using the radiomics
object and its object functions comply with the
standards provided by the image biomarker standardisation initiative (IBSI).
Creation
Description
creates a R
= radiomics(data
,roi
)radiomics
object for the medical volume
data
and the region of interest (ROI) roi
. You
can compute shape features, intensity features, and texture features in the ROI of the
medical volume using the object. data
and roi
set the Data and
ROILabel
properties, respectively.
sets other properties of
the object, for preprocessing the medical volume and region of interest, using one or more
optional name-value arguments.R
= radiomics(data
,roi
,Name=Value
)
Properties
Data
— Medical volume to prepare for radiomics
medicalVolume
object
This property is read-only.
Medical volume to prepare for radiomics, specified as a medicalVolume
object.
ROILabel
— ROI mask volume
medicalVolume
object
This property is read-only.
ROI mask volume, specified as a medicalVolume
object with the same dimensions as the object in Data.
Resample
— Medical volume and ROI mask volume resampling
true
or 1
(default) | false
or 0
This property is read-only.
Medical volume and ROI mask volume resampling, specified as a numeric or logical
1
(true
) or 0
(false
). Specify Resample
as
true
to resample the medical volume and ROI mask volume to an
isotropic voxel spacing.
Note
If you specify Resample
as false
, the
radiomics
object ignores the values specified for ResampledVoxelSpacing, DataResampleMethod, and MaskResampleMethod.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
Resegment
— Medical volume resegmentation
true
or 1
(default) | false
or 0
This property is read-only.
Medical volume resegmentation, specified as a numeric or logical
1
(true
) or 0
(false
). Specify Resegment
as
true
to resegment the medical volume.
Note
If you specify Resegment
as false
, the
radiomics
object ignores the values specified for ResegmentationRange and ExcludeOutliers.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
Discretize
— Medical volume discretization
true
or 1
(default) | false
or 0
This property is read-only.
Medical volume discretization, specified as a numeric or logical
1
(true
) or 0
(false
). Specify Discretize
as
true
to discretize the medical volume for computing intensity
histogram features and texture features.
Note
If you specify Discretize
as false
, the
radiomics
object ignores the values specified for DiscreteBinSizeOrBinNumber and DiscreteMethod.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
DiscretizeIVH
— Medical volume discretization for IVH features
true
or 1
(default) | false
or 0
This property is read-only.
Medical volume discretization for IVH features, specified as a numeric or logical
1
(true
) or 0
(false
). Specify DiscretizeIVH
as
true
to discretize the medical volume for computing intensity
volume histogram (IVH) features.
Note
If you specify DiscretizeIVH
as false
, the
radiomics
object ignores the values specified for DiscreteIVHBinSizeOrBinNumber and DiscreteIVHMethod.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
ResampledVoxelSpacing
— Resampled voxel spacing
ceil(min(data.VoxelSpacing))
(default) | positive scalar
This property is read-only.
Resampled voxel spacing, specified a positive scalar. This value must be less than half of the minimum spatial dimension of the medical volume.
Note
The radiomics
object ignores this value if you specify
Resample as false
.
Data Types: single
| double
DataResampleMethod
— Medical volume resampling method
"linear"
(default) | "nearest"
| "cubic"
| "spline"
This property is read-only.
Medical volume resampling method, specified as "nearest"
,
"linear"
, "cubic"
, or
"spline"
.
Note
The radiomics
object ignores this value if you specify
Resample as false
.
Data Types: char
| string
MaskResampleMethod
— ROI mask volume resampling method
"linear"
(default) | "nearest"
| "cubic"
| "spline"
This property is read-only.
ROI mask volume resampling method, specified as "nearest"
,
"linear"
, "cubic"
, or
"spline"
.
Note
The radiomics
object ignores this value if you specify
Resample as false
.
Data Types: char
| string
ResegmentationRange
— Resegmentation range
[]
(default) | two-element numeric vector
This property is read-only.
Resegmentation range, specified as a two-element numeric vector. The object removes voxels with intensities outside the specified range. By default, the resegmentation range value is empty, and the object does not perform resegmentation.
Note
The radiomics
object ignores this value if you specify
Resegment as false
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
ExcludeOutliers
— Outlier exclusion
true
or 1
(default) | false
or 0
This property is read-only.
Outlier exclusion, specified as a numeric or logical 1
(true
) or 0
(false
). Specify
ExcludeOutliers
as true
to compute the inlier
range of the medical volume and remove voxels with intensities outside the inlier range.
Note
The radiomics
object ignores this value if you specify
Resegment as false
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
DiscreteBinSizeOrBinNumber
— Bin size or bin number for discretization
[]
(default) | positive scalar
This property is read-only.
Bin size or bin number for discretization, specified as a positive scalar. The
specified value is the bin size if DiscreteMethod is "FixedBinSize"
and the bin number if
DiscreteMethod is "FixedBinNumber"
.
DiscreteBinSizeOrBinNumber
must be less than or equal to the
maximum intensity value of the medical volume when DiscreteMethod is FixedBinSize
.
DiscreteBinSizeOrBinNumber
must be greater than one when DiscreteMethod is FixedBinNumber
. By default, the bin
size or bin number is empty, and the object performs discretization using the value of
bin size or bin number as round(range(data.Voxels(:)/10))
.
Note
The radiomics
object ignores this value if you specify
Discretize as false
.
Data Types: single
| double
DiscreteMethod
— Discretization method
"FixedBinNumber"
(default) | "FixedBinSize"
This property is read-only.
Discretization method, specified as "FixedBinSize"
or
"FixedBinNumber"
.
Note
The radiomics
object ignores this value if you specify
Discretize as false
.
Data Types: char
| string
DiscreteIVHBinSizeOrBinNumber
— Bin size or bin number for discretization for IVH features
[]
(default) | positive scalar
This property is read-only.
Bin size or bin number for discretization for IVH features, specified as a positive
scalar. The specified value is the bin size if DiscreteIVHMethod is "FixedBinSize"
and the bin number
if DiscreteIVHMethod is "FixedBinNumber"
.
DiscreteIVHBinSizeOrBinNumber
must be less than or equal to the
maximum intensity value of the medical volume when DiscreteIVHMethod is FixedBinSize
.
DiscreteIVHBinSizeOrBinNumber
must be greater than one when
DiscreteIVHMethod is FixedBinNumber
. By default, the
bin size or bin number is empty, and the object performs discretization using the value
of bin size or bin number as round(range(data.Voxels(:)/10))
.
Note
The radiomics
object ignores this value if you specify
DiscretizeIVH as false
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
DiscreteIVHMethod
— Discretization method for IVH features
"FixedBinNumber"
(default) | "FixedBinSize"
This property is read-only.
Discretization method for IVH features, specified as
"FixedBinSize"
or "FixedBinNumber"
.
Note
The radiomics
object ignores this value if you specify
DiscretizeIVH as false
.
Data Types: char
| string
Object Functions
shapeFeatures | Radiomics shape features |
intensityFeatures | Radiomics intensity features |
textureFeatures | Radiomics texture features |
Examples
Compute Radiomics Features for Computed Tomography (CT) Image
Import a computed tomography (CT) image volume and the corresponding ROI mask volume from the IBSI validation data set [1][2][3] as medicalVolume
objects.
unzip("CTImageMaskNIfTI.zip") data = medicalVolume("CT_image.nii.gz"); roi = medicalVolume("CT_mask.nii.gz");
Visualize a slice of the CT image volume and the corresponding ROI.
figure
imshowpair(data.Voxels(:,:,20),roi.Voxels(:,:,20),"montage")
Create a radiomics
object, using the CT image volume and ROI mask volume, with default preprocessing options.
R = radiomics(data,roi)
R = radiomics with properties: Data: [1x1 medicalVolume] ROILabel: [1x1 medicalVolume] Resample: 1 Resegment: 1 Discretize: 1 DiscretizeIVH: 1 ResampledVoxelSpacing: 1 DataResampleMethod: 'linear' MaskResampleMethod: 'linear' ResegmentationRange: [] ExcludeOutliers: 1 DiscreteBinSizeOrBinNumber: [] DiscreteMethod: 'FixedBinNumber' DiscreteIVHBinSizeOrBinNumber: [] DiscreteIVHMethod: 'FixedBinNumber'
Compute the shape, intensity, and texture features of the ROI in the CT image volume.
S = shapeFeatures(R)
S=1×24 table
LabelID VolumeMesh3D VolumeVoxelCount3D SurfaceAreaMesh3D SurfaceVolumeRatio3D Compactness1_3D Compactness2_3D SphericalDisproportion3D Sphericity3D Asphericity3D CentreOfMassShift3D Maximum3dDiameter3D MajorAxisLength3D MinorAxisLength3D LeastAxisLength3D Elongation3D Flatness3D VolumeDensityAABB_3D AreaDensityAABB_3D VolumeDensityAEE_3D AreaDensityAEE_3D VolumeDensityConvexHull3D AreaDensityConvexHull3D IntegratedIntensity3D
_______ ____________ __________________ _________________ ____________________ _______________ _______________ ________________________ ____________ _____________ ___________________ ___________________ _________________ _________________ _________________ ____________ __________ ____________________ __________________ ___________________ _________________ _________________________ _______________________ _____________________
"1" 52923 52975 8425 0.15919 0.038611 0.5297 1.2359 0.80911 0.23592 0.8888 57.359 50.405 44.1 33.518 0.8749 0.66497 0.46924 0.59248 1.3566 1.4135 0.89714 1.0994 3.1069e+06
I = intensityFeatures(R)
I=1×50 table
LabelID LocalIntensityPeak3D GlobalIntensityPeak3D MeanIntensity3D IntensityVariance3D IntensitySkewness3D IntensityKurtosis3D MedianIntensity3D MinimumIntensity3D TenthIntensityPercentile3D NinetiethIntensityPercentile3D MaximumIntensity3D IntensityInterquartileRange3D IntensityRange3D MeanAbsoluteDeviation3D RobustMeanAbsoluteDeviation3D MedianAbsoluteDeviation3D CoefficientOfVariation3D QuartileCoefficientOfDispersion3D IntensityEnergy3D RootMeanSquare3D MeanDiscretisedIntensity3D DiscretisedIntensityVariance3D DiscretisedIntensitySkewness3D DiscretisedIntensityKurtosis3D MedianDiscretisedIntensity3D MinimumDiscretisedIntensity3D TenthDiscretisedIntensityPercentile3D NinetiethDiscretisedIntensityPercentile3D MaximumDiscretisedIntensity3D IntensityHistogramMode3D DiscretisedIntensityInterquartileRange3D DiscretisedIntensityRange3D IntensityHistogramMeanAbsoluteDeviation3D IntensityHistogramRobustMeanAbsoluteDeviation3D IntensityHistogramMedianAbsoluteDeviation3D IntensityHistogramCoeffcientOfVariation3D IntensityHistogramQuartileCoeffcientOfDispersion3D DiscretisedIntensityEntropy3D DiscretisedIntensityUniformity3D MaximumHistogramGradient3D MaximumHistogramGradientIntensity3D MinimumHistogramGradient3D MinimumHistogramGradientIntensity3D TenPercentVolumeFraction3D NinetyPercentVolumeFraction3D TenPercentIntensityFraction3D NinetyPercentIntensityFraction3D VolumeFractionDifference3D IntensityFractionDifference3D
_______ ____________________ _____________________ _______________ ___________________ ___________________ ___________________ _________________ __________________ __________________________ ______________________________ __________________ _____________________________ ________________ _______________________ _____________________________ _________________________ ________________________ _________________________________ _________________ ________________ __________________________ ______________________________ ______________________________ ______________________________ ____________________________ _____________________________ _____________________________________ _________________________________________ _____________________________ ________________________ ________________________________________ ___________________________ _________________________________________ _______________________________________________ ___________________________________________ _________________________________________ __________________________________________________ _____________________________ ________________________________ __________________________ ___________________________________ __________________________ ___________________________________ __________________________ _____________________________ _____________________________ ________________________________ __________________________ _____________________________
"1" 76.235 77.672 58.706 855.73 -0.11994 -0.04034 59 -31 21 96 148 39 179 23.302 16.403 23.294 0.4983 0.32773 2.2674e+08 65.588 9.5216 8.6378 -0.11707 -0.057331 10 1 6 13 18 10 4 17 2.3549 1.7176 2.3425 0.30867 0.2 3.5962 0.096231 1444 7 -1517.5 13 0.99048 0.0056728 711 292 0.9848 419
T = textureFeatures(R)
T=1×137 table
LabelID JointMaximumAveraged3D JointAverageAveraged3D JointVarianceAveraged3D JointEntropyAveraged3D DifferenceAverageAveraged3D DifferenceVarianceAveraged3D DifferenceEntropyAveraged3D SumAverageAveraged3D SumVarianceAveraged3D SumEntropyAveraged3D AngularSecondMomentAveraged3D ContrastAveraged3D DissimilarityAveraged3D InverseDifferenceAveraged3D NormalisedInverseDifferenceAveraged3D InverseDifferenceMomentAveraged3D NormalisedInverseDifferenceMomentAveraged3D InverseVarianceAveraged3D CorrelationAveraged3D AutoCorrelationAveraged3D ClusterTendencyAveraged3D ClusterShadeAveraged3D ClusterProminenceAveraged3D InformationCorrelation1Averaged3D InformationCorrelation2Averaged3D JointMaximumMerged3D JointAverageMerged3D JointVarianceMerged3D JointEntropyMerged3D DifferenceAverageMerged3D DifferenceVarianceMerged3D DifferenceEntropyMerged3D SumAverageMerged3D SumVarianceMerged3D SumEntropyMerged3D AngularSecondMomentMerged3D ContrastMerged3D DissimilarityMerged3D InverseDifferenceMerged3D NormalisedInverseDifferenceMerged3D InverseDifferenceMomentMerged3D NormalisedInverseDifferenceMomentMerged3D InverseVarianceMerged3D CorrelationMerged3D AutoCorrelationMerged3D ClusterTendencyMerged3D ClusterShadeMerged3D ClusterProminenceMerged3D InformationCorrelation1Merged3D InformationCorrelation2Merged3D ShortRunsEmphasisAveraged3D LongRunsEmphasisAveraged3D LowGrayLevelRunEmphasisAveraged3D HighGrayLevelRunEmphasisAveraged3D ShortRunLowGrayLevelEmphasisAveraged3D ShortRunHighGrayLevelEmphasisAveraged3D LongRunLowGrayLevelEmphasisAveraged3D LongRunHighGrayLevelEmphasisAveraged3D GrayLevelNonUniformityAveraged3D NormalisedGrayLevelNonUniformityAveraged3D RunLengthNonUniformityAveraged3D NormalisedRunLengthNonUniformityAveraged3D RunPercentageAveraged3D GrayLevelVarianceAveraged3D RunLengthVarianceAveraged3D RunEntropyAveraged3D ShortRunsEmphasisMerged3D LongRunsEmphasisMerged3D LowGrayLevelRunEmphasisMerged3D HighGrayLevelRunEmphasisMerged3D ShortRunLowGrayLevelEmphasisMerged3D ShortRunHighGrayLevelEmphasisMerged3D LongRunLowGrayLevelEmphasisMerged3D LongRunHighGrayLevelEmphasisMerged3D GrayLevelNonUniformityMerged3D NormalisedGrayLevelNonUniformityMerged3D RunLengthNonUniformityMerged3D NormalisedRunLengthNonUniformityMerged3D RunPercentageMerged3D GrayLevelVarianceMerged3D RunLengthVarianceMerged3D RunEntropyMerged3D SmallZoneEmphasis3D LargeZoneEmphasis3D LowGrayLevelZoneEmphasis3D HighGrayLevelZoneEmphasis3D SmallZoneLowGrayLevelEmphasis3D SmallZoneHighGrayLevelEmphasis3D LargeZoneLowGrayLevelEmphasis3D LargeZoneHighGrayLevelEmphasis3D GrayLevelNonUniformity3D NormalisedGrayLevelNonUniformity3D ZoneSizeNonUniformity3D NormalisedZoneSizeNonUniformity3D ZonePercentage3D GrayLevelVariance3D ZoneSizeVariance3D ZoneSizeEntropy3D SmallDistanceEmphasis3D LargeDistanceEmphasis3D LowGrayLevelZoneDistanceEmphasis3D HighGrayLevelZoneDistanceEmphasis3D SmallDistanceLowGrayLevelEmphasis3D SmallDistanceHighGrayLevelEmphasis3D LargeDistanceLowGrayLevelEmphasis3D LargeDistanceHighGrayLevelEmphasis3D GrayLevelDistanceNonUniformity3D NormalisedGrayLevelDistanceNonUniformity3D ZoneDistanceNonUniformity3D NormalisedZoneDistanceNonUniformity3D ZoneDistancePercentage3D GrayLevelDistanceVariance3D ZoneDistanceVariance3D ZoneDistanceEntropy3D Coarseness3D Contrast3D Busyness3D Complexity3D Strength3D LowDependenceEmphasis3D HighDependenceEmphasis3D LowGrayLevelCountEmphasis3D HighGrayLevelCountEmphasis3D LowDependenceLowGrayLevelEmphasis3D LowDependenceHighGrayLevelEmphasis3D HighDependenceLowGrayLevelEmphasis3D HighDependenceHighGrayLevelEmphasi3D GrayLevelDependenceNonUniformity3D NormalisedGrayLevelDependenceNonUniformity3D DependenceCountNonUniformity3D NormalisedDependenceCountNonUniformity3D DependenceCountPercentage3D GrayLevelDependenceVariance3D DependenceCountVariance3D DependenceCountEntropy3D DependenceCountEnergy3D
_______ ______________________ ______________________ _______________________ ______________________ ___________________________ ____________________________ ___________________________ ____________________ _____________________ ____________________ _____________________________ __________________ _______________________ ___________________________ _____________________________________ _________________________________ ___________________________________________ _________________________ _____________________ _________________________ _________________________ ______________________ ___________________________ _________________________________ _________________________________ ____________________ ____________________ _____________________ ____________________ _________________________ __________________________ _________________________ __________________ ___________________ __________________ ___________________________ ________________ _____________________ _________________________ ___________________________________ _______________________________ _________________________________________ _______________________ ___________________ _______________________ _______________________ ____________________ _________________________ _______________________________ _______________________________ ___________________________ __________________________ _________________________________ __________________________________ ______________________________________ _______________________________________ _____________________________________ ______________________________________ ________________________________ __________________________________________ ________________________________ __________________________________________ _______________________ ___________________________ ___________________________ ____________________ _________________________ ________________________ _______________________________ ________________________________ ____________________________________ _____________________________________ ___________________________________ ____________________________________ ______________________________ ________________________________________ ______________________________ ________________________________________ _____________________ _________________________ _________________________ __________________ ___________________ ___________________ __________________________ ___________________________ _______________________________ ________________________________ _______________________________ ________________________________ ________________________ __________________________________ _______________________ _________________________________ ________________ ___________________ __________________ _________________ _______________________ _______________________ __________________________________ ___________________________________ ___________________________________ ____________________________________ ___________________________________ ____________________________________ ________________________________ __________________________________________ ___________________________ _____________________________________ ________________________ ___________________________ ______________________ _____________________ ____________ __________ __________ ____________ __________ _______________________ ________________________ ___________________________ ____________________________ ___________________________________ ____________________________________ ____________________________________ ____________________________________ __________________________________ ____________________________________________ ______________________________ ________________________________________ ___________________________ _____________________________ _________________________ ________________________ _______________________
"1" 0.023811 9.6016 8.3563 6.8904 2.3407 3.5474 2.7164 19.203 24.082 4.3302 0.011903 9.3434 2.3407 0.42572 0.89254 0.34697 0.97367 0.34478 0.44066 95.876 24.082 -14.219 1766.6 -0.071978 0.51232 0.02387 9.6014 8.357 6.9797 2.3355 3.8557 2.796 19.203 24.118 4.3401 0.011132 9.3101 2.3355 0.42635 0.89275 0.34775 0.97376 0.34535 0.44298 95.889 24.118 -14.595 1772.3 -0.047062 0.53447 0.8948 1.6184 0.022051 99.343 0.020252 88.924 0.032272 160.51 4252.9 0.093867 34781 0.76314 0.85952 8.9998 0.24022 4.2908 0.89739 1.5847 0.022046 99.351 0.020307 89.195 0.031637 157.17 55285 0.093871 4.5075e+05 0.76535 0.85952 8.9979 0.23116 4.2962 0.54053 21751 0.044971 101.61 0.026927 55.289 237.38 2.1404e+06 398.92 0.065861 1677.4 0.27694 0.11492 18.452 21676 6.6843 0.37615 38.684 0.044971 101.61 0.023829 29.867 1.1708 4444.5 398.92 0.065861 901.04 0.14876 0.11492 18.452 16.962 7.3218 0.00015653 0.088117 36.374 194.83 0.015559 0.12867 26.96 0.021291 99.298 0.0046226 12.944 0.422 2663.2 5072.2 0.096231 6725.7 0.1276 1 8.6377 5.3148 6.6704 0.012506
[1] Vallières, Martin, Carolyn R. Freeman, Sonia R. Skamene, and Issam El Naqa. “A Radiomics Model from Joint FDG-PET and MRI Texture Features for the Prediction of Lung Metastases in Soft-Tissue Sarcomas of the Extremities.” The Cancer Imaging Archive, 2015. https://doi.org/10.7937/K9/TCIA.2015.7GO2GSKS.
[2] Vallières, M, C R Freeman, S R Skamene, and I El Naqa. “A Radiomics Model from Joint FDG-PET and MRI Texture Features for the Prediction of Lung Metastases in Soft-Tissue Sarcomas of the Extremities.” Physics in Medicine and Biology 60, no. 14 (July 7, 2015): 5471–96. https://doi.org/10.1088/0031-9155/60/14/5471.
[3] Clark, Kenneth, Bruce Vendt, Kirk Smith, John Freymann, Justin Kirby, Paul Koppel, Stephen Moore, et al. “The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository.” Journal of Digital Imaging 26, no. 6 (December 2013): 1045–57. https://doi.org/10.1007/s10278-013-9622-7.
Compute Radiomics Features for Magnetic Resonance (MR) Image
Import a magnetic resonance (MR) image volume from the IBSI validation data set [1][2][3] as a medicalVolume
object.
unzip("MRImageMaskDICOM.zip") data = medicalVolume("MR_image");
Read the corresponding DICOM metadata from the DICOM-RT structure set file. Extract the ROI data from the structure set and ROI contour modules of the DICOM metadata.
info = dicominfo("MR_mask/RS.dcm");
contours = dicomContours(info);
contourIndex = 1;
Get the spatial details of the DICOM volume. Create an ROI mask volume as a medicalVolume
object from the spatial details and ROI contour.
[~,spatial] = dicomreadVolume("MR_image");
roi = createMask(contours,contourIndex,spatial);
roi = permute(roi,[2 1 3]);
roi = medicalVolume(uint8(roi),data.VolumeGeometry);
Visualize a slice of the MR image volume and the corresponding ROI.
figure
imshowpair(data.Voxels(:,:,20),roi.Voxels(:,:,20),"montage")
Create a radiomics
object, using the MR image volume and ROI mask volume, with default preprocessing options.
R = radiomics(data,roi)
R = radiomics with properties: Data: [1x1 medicalVolume] ROILabel: [1x1 medicalVolume] Resample: 1 Resegment: 1 Discretize: 1 DiscretizeIVH: 1 ResampledVoxelSpacing: 1 DataResampleMethod: 'linear' MaskResampleMethod: 'linear' ResegmentationRange: [] ExcludeOutliers: 1 DiscreteBinSizeOrBinNumber: [] DiscreteMethod: 'FixedBinNumber' DiscreteIVHBinSizeOrBinNumber: [] DiscreteIVHMethod: 'FixedBinNumber'
Compute the shape, intensity, and texture features of the ROI in the MR image volume.
S = shapeFeatures(R)
S=1×24 table
LabelID VolumeMesh3D VolumeVoxelCount3D SurfaceAreaMesh3D SurfaceVolumeRatio3D Compactness1_3D Compactness2_3D SphericalDisproportion3D Sphericity3D Asphericity3D CentreOfMassShift3D Maximum3dDiameter3D MajorAxisLength3D MinorAxisLength3D LeastAxisLength3D Elongation3D Flatness3D VolumeDensityAABB_3D AreaDensityAABB_3D VolumeDensityAEE_3D AreaDensityAEE_3D VolumeDensityConvexHull3D AreaDensityConvexHull3D IntegratedIntensity3D
_______ ____________ __________________ _________________ ____________________ _______________ _______________ ________________________ ____________ _____________ ___________________ ___________________ _________________ _________________ _________________ ____________ __________ ____________________ __________________ ___________________ _________________ _________________________ _______________________ _____________________
"1" 52977 53029 8267 0.15605 0.039764 0.5618 1.2119 0.82514 0.21192 0.58271 57.044 50.077 44.011 33.814 0.87885 0.67523 0.5173 0.62186 1.3577 1.3919 0.91396 1.092 1.9964e+07
I = intensityFeatures(R)
I=1×50 table
LabelID LocalIntensityPeak3D GlobalIntensityPeak3D MeanIntensity3D IntensityVariance3D IntensitySkewness3D IntensityKurtosis3D MedianIntensity3D MinimumIntensity3D TenthIntensityPercentile3D NinetiethIntensityPercentile3D MaximumIntensity3D IntensityInterquartileRange3D IntensityRange3D MeanAbsoluteDeviation3D RobustMeanAbsoluteDeviation3D MedianAbsoluteDeviation3D CoefficientOfVariation3D QuartileCoefficientOfDispersion3D IntensityEnergy3D RootMeanSquare3D MeanDiscretisedIntensity3D DiscretisedIntensityVariance3D DiscretisedIntensitySkewness3D DiscretisedIntensityKurtosis3D MedianDiscretisedIntensity3D MinimumDiscretisedIntensity3D TenthDiscretisedIntensityPercentile3D NinetiethDiscretisedIntensityPercentile3D MaximumDiscretisedIntensity3D IntensityHistogramMode3D DiscretisedIntensityInterquartileRange3D DiscretisedIntensityRange3D IntensityHistogramMeanAbsoluteDeviation3D IntensityHistogramRobustMeanAbsoluteDeviation3D IntensityHistogramMedianAbsoluteDeviation3D IntensityHistogramCoeffcientOfVariation3D IntensityHistogramQuartileCoeffcientOfDispersion3D DiscretisedIntensityEntropy3D DiscretisedIntensityUniformity3D MaximumHistogramGradient3D MaximumHistogramGradientIntensity3D MinimumHistogramGradient3D MinimumHistogramGradientIntensity3D TenPercentVolumeFraction3D NinetyPercentVolumeFraction3D TenPercentIntensityFraction3D NinetyPercentIntensityFraction3D VolumeFractionDifference3D IntensityFractionDifference3D
_______ ____________________ _____________________ _______________ ___________________ ___________________ ___________________ _________________ __________________ __________________________ ______________________________ __________________ _____________________________ ________________ _______________________ _____________________________ _________________________ ________________________ _________________________________ _________________ ________________ __________________________ ______________________________ ______________________________ ______________________________ ____________________________ _____________________________ _____________________________________ _________________________________________ _____________________________ ________________________ ________________________________________ ___________________________ _________________________________________ _______________________________________________ ___________________________________________ _________________________________________ __________________________________________________ _____________________________ ________________________________ __________________________ ___________________________________ __________________________ ___________________________________ __________________________ _____________________________ _____________________________ ________________________________ __________________________ _____________________________
"1" 716.07 716.07 376.84 5820.4 1.6378 2.2078 351 265 311 495 662 72 397 56.834 34.043 51.62 0.20245 0.099448 7.6772e+09 384.49 11.766 59.148 1.6361 2.1973 9 1 5 24 40 7 7 39 5.7308 3.5845 5.1877 0.65364 0.33333 4.4234 0.064718 2057.5 4 -966.5 10 0.95596 0.01398 581 117 0.94198 464
T = textureFeatures(R)
T=1×137 table
LabelID JointMaximumAveraged3D JointAverageAveraged3D JointVarianceAveraged3D JointEntropyAveraged3D DifferenceAverageAveraged3D DifferenceVarianceAveraged3D DifferenceEntropyAveraged3D SumAverageAveraged3D SumVarianceAveraged3D SumEntropyAveraged3D AngularSecondMomentAveraged3D ContrastAveraged3D DissimilarityAveraged3D InverseDifferenceAveraged3D NormalisedInverseDifferenceAveraged3D InverseDifferenceMomentAveraged3D NormalisedInverseDifferenceMomentAveraged3D InverseVarianceAveraged3D CorrelationAveraged3D AutoCorrelationAveraged3D ClusterTendencyAveraged3D ClusterShadeAveraged3D ClusterProminenceAveraged3D InformationCorrelation1Averaged3D InformationCorrelation2Averaged3D JointMaximumMerged3D JointAverageMerged3D JointVarianceMerged3D JointEntropyMerged3D DifferenceAverageMerged3D DifferenceVarianceMerged3D DifferenceEntropyMerged3D SumAverageMerged3D SumVarianceMerged3D SumEntropyMerged3D AngularSecondMomentMerged3D ContrastMerged3D DissimilarityMerged3D InverseDifferenceMerged3D NormalisedInverseDifferenceMerged3D InverseDifferenceMomentMerged3D NormalisedInverseDifferenceMomentMerged3D InverseVarianceMerged3D CorrelationMerged3D AutoCorrelationMerged3D ClusterTendencyMerged3D ClusterShadeMerged3D ClusterProminenceMerged3D InformationCorrelation1Merged3D InformationCorrelation2Merged3D ShortRunsEmphasisAveraged3D LongRunsEmphasisAveraged3D LowGrayLevelRunEmphasisAveraged3D HighGrayLevelRunEmphasisAveraged3D ShortRunLowGrayLevelEmphasisAveraged3D ShortRunHighGrayLevelEmphasisAveraged3D LongRunLowGrayLevelEmphasisAveraged3D LongRunHighGrayLevelEmphasisAveraged3D GrayLevelNonUniformityAveraged3D NormalisedGrayLevelNonUniformityAveraged3D RunLengthNonUniformityAveraged3D NormalisedRunLengthNonUniformityAveraged3D RunPercentageAveraged3D GrayLevelVarianceAveraged3D RunLengthVarianceAveraged3D RunEntropyAveraged3D ShortRunsEmphasisMerged3D LongRunsEmphasisMerged3D LowGrayLevelRunEmphasisMerged3D HighGrayLevelRunEmphasisMerged3D ShortRunLowGrayLevelEmphasisMerged3D ShortRunHighGrayLevelEmphasisMerged3D LongRunLowGrayLevelEmphasisMerged3D LongRunHighGrayLevelEmphasisMerged3D GrayLevelNonUniformityMerged3D NormalisedGrayLevelNonUniformityMerged3D RunLengthNonUniformityMerged3D NormalisedRunLengthNonUniformityMerged3D RunPercentageMerged3D GrayLevelVarianceMerged3D RunLengthVarianceMerged3D RunEntropyMerged3D SmallZoneEmphasis3D LargeZoneEmphasis3D LowGrayLevelZoneEmphasis3D HighGrayLevelZoneEmphasis3D SmallZoneLowGrayLevelEmphasis3D SmallZoneHighGrayLevelEmphasis3D LargeZoneLowGrayLevelEmphasis3D LargeZoneHighGrayLevelEmphasis3D GrayLevelNonUniformity3D NormalisedGrayLevelNonUniformity3D ZoneSizeNonUniformity3D NormalisedZoneSizeNonUniformity3D ZonePercentage3D GrayLevelVariance3D ZoneSizeVariance3D ZoneSizeEntropy3D SmallDistanceEmphasis3D LargeDistanceEmphasis3D LowGrayLevelZoneDistanceEmphasis3D HighGrayLevelZoneDistanceEmphasis3D SmallDistanceLowGrayLevelEmphasis3D SmallDistanceHighGrayLevelEmphasis3D LargeDistanceLowGrayLevelEmphasis3D LargeDistanceHighGrayLevelEmphasis3D GrayLevelDistanceNonUniformity3D NormalisedGrayLevelDistanceNonUniformity3D ZoneDistanceNonUniformity3D NormalisedZoneDistanceNonUniformity3D ZoneDistancePercentage3D GrayLevelDistanceVariance3D ZoneDistanceVariance3D ZoneDistanceEntropy3D Coarseness3D Contrast3D Busyness3D Complexity3D Strength3D LowDependenceEmphasis3D HighDependenceEmphasis3D LowGrayLevelCountEmphasis3D HighGrayLevelCountEmphasis3D LowDependenceLowGrayLevelEmphasis3D LowDependenceHighGrayLevelEmphasis3D HighDependenceLowGrayLevelEmphasis3D HighDependenceHighGrayLevelEmphasi3D GrayLevelDependenceNonUniformity3D NormalisedGrayLevelDependenceNonUniformity3D DependenceCountNonUniformity3D NormalisedDependenceCountNonUniformity3D DependenceCountPercentage3D GrayLevelDependenceVariance3D DependenceCountVariance3D DependenceCountEntropy3D DependenceCountEnergy3D
_______ ______________________ ______________________ _______________________ ______________________ ___________________________ ____________________________ ___________________________ ____________________ _____________________ ____________________ _____________________________ __________________ _______________________ ___________________________ _____________________________________ _________________________________ ___________________________________________ _________________________ _____________________ _________________________ _________________________ ______________________ ___________________________ _________________________________ _________________________________ ____________________ ____________________ _____________________ ____________________ _________________________ __________________________ _________________________ __________________ ___________________ __________________ ___________________________ ________________ _____________________ _________________________ ___________________________________ _______________________________ _________________________________________ _______________________ ___________________ _______________________ _______________________ ____________________ _________________________ _______________________________ _______________________________ ___________________________ __________________________ _________________________________ __________________________________ ______________________________________ _______________________________________ _____________________________________ ______________________________________ ________________________________ __________________________________________ ________________________________ __________________________________________ _______________________ ___________________________ ___________________________ ____________________ _________________________ ________________________ _______________________________ ________________________________ ____________________________________ _____________________________________ ___________________________________ ____________________________________ ______________________________ ________________________________________ ______________________________ ________________________________________ _____________________ _________________________ _________________________ __________________ ___________________ ___________________ __________________________ ___________________________ _______________________________ ________________________________ _______________________________ ________________________________ ________________________ __________________________________ _______________________ _________________________________ ________________ ___________________ __________________ _________________ _______________________ _______________________ __________________________________ ___________________________________ ___________________________________ ____________________________________ ___________________________________ ____________________________________ ________________________________ __________________________________________ ___________________________ _____________________________________ ________________________ ___________________________ ______________________ _____________________ ____________ __________ __________ ____________ __________ _______________________ ________________________ ___________________________ ____________________________ ___________________________________ ____________________________________ ____________________________________ ____________________________________ __________________________________ ____________________________________________ ______________________________ ________________________________________ ___________________________ _____________________________ _________________________ ________________________ _______________________
"1" 0.055201 11.152 49.523 7.1139 1.7744 6.5868 2.5284 22.304 188.25 5.279 0.020007 9.8416 1.7744 0.58486 0.96071 0.54425 0.99421 0.37181 0.89929 168.99 188.25 4341 1.9593e+05 -0.35169 0.97251 0.054921 11.154 49.561 7.1632 1.7706 6.6692 2.5465 22.307 188.44 5.2854 0.019688 9.8041 1.7706 0.58533 0.96079 0.54477 0.99423 0.3717 0.90109 169.06 188.44 4353.5 1.9663e+05 -0.34081 0.97328 0.79186 3.639 0.014285 255.46 0.0097224 235.58 0.077719 443.56 1736.7 0.049595 20497 0.58478 0.672 70.681 1.3817 5.8533 0.79358 3.5532 0.014342 254.45 0.0098114 234.83 0.07564 436.57 22493 0.049578 2.6594e+05 0.58617 0.672 70.759 1.3388 5.8673 0.62345 23996 0.0044919 582.9 0.0023151 382.95 514.26 1.4324e+06 199.65 0.032686 2210.5 0.36191 0.11761 71.698 23924 7.1635 0.58649 5.8012 0.0044919 582.9 0.0019566 378.98 0.057854 2508.2 199.65 0.032686 2057.9 0.33692 0.11761 71.698 1.904 6.9196 0.00051829 0.070477 5.531 610.45 0.44531 0.11335 135.06 0.017226 197.59 0.00062986 59.623 3.3416 8548.8 3361 0.064718 2707.1 0.052127 1 59.146 44.279 8.2752 0.0038749
[1] Vallières, Martin, Carolyn R. Freeman, Sonia R. Skamene, and Issam El Naqa. “A Radiomics Model from Joint FDG-PET and MRI Texture Features for the Prediction of Lung Metastases in Soft-Tissue Sarcomas of the Extremities.” The Cancer Imaging Archive, 2015. https://doi.org/10.7937/K9/TCIA.2015.7GO2GSKS.
[2] Vallières, M, C R Freeman, S R Skamene, and I El Naqa. “A Radiomics Model from Joint FDG-PET and MRI Texture Features for the Prediction of Lung Metastases in Soft-Tissue Sarcomas of the Extremities.” Physics in Medicine and Biology 60, no. 14 (July 7, 2015): 5471–96. https://doi.org/10.1088/0031-9155/60/14/5471.
[3] Clark, Kenneth, Bruce Vendt, Kirk Smith, John Freymann, Justin Kirby, Paul Koppel, Stephen Moore, et al. “The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository.” Journal of Digital Imaging 26, no. 6 (December 2013): 1045–57. https://doi.org/10.1007/s10278-013-9622-7.
Version History
Introduced in R2023b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)