isanomaly
Find anomalies in data using one-class support vector machine (SVM) for incremental learning
Since R2023b
Syntax
Description
finds anomalies in the table tf
= isanomaly(Mdl
,Tbl
)Tbl
using the incrementalOneClassSVM
object Mdl
and returns the logical
array tf
, whose elements are true
when an anomaly is
detected in the corresponding row of Tbl
. You must use this syntax if
you create Mdl
by passing a table to incrementalOneClassSVM
or the incrementalLearner
function of OneClassSVM
.
specifies the threshold for the anomaly score using any of the input argument combinations
in the previous syntaxes. tf
= isanomaly(___,ScoreThreshold=scoreThreshold
)isanomaly
detects observations with scores
above scoreThreshold
as anomalies.
Examples
Input Arguments
Output Arguments
References
[1] Guha, Sudipto, N. Mishra, G. Roy, and O. Schrijvers. "Robust Random Cut Forest Based Anomaly Detection on Streams," Proceedings of The 33rd International Conference on Machine Learning 48 (June 2016): 2712–21.
[2] Bartos, Matthew D., A. Mullapudi, and S. C. Troutman. "rrcf: Implementation of the Robust Random Cut Forest Algorithm for Anomaly Detection on Streams." Journal of Open Source Software 4, no. 35 (2019): 1336.
Version History
Introduced in R2023b