Double precision limit with norm

15 visualizzazioni (ultimi 30 giorni)
Zoltán Csáti
Zoltán Csáti il 29 Ott 2013
Modificato: Matt J il 29 Ott 2013
I wrote a Taylor series approach for calculating the natural logarithm of matrix A. When I compared my result with the built-in function logm ( norm(myResult-logm(A),2) ), I got the following: 1.3878e-016. However eps = 2^(-52) = 2.2204e-016 when we use double precision. How can MATLAB determine this value if its maximum precision is lower than the result? Is it a bug? (The estimated norm with normest is 1.9626e-016.)

Risposta accettata

Matt J
Matt J il 29 Ott 2013
Modificato: Matt J il 29 Ott 2013
eps() gives a relative precision limit.
>> eps(1)
ans =
2.2204e-16
>> eps(.001)
ans =
2.1684e-19
Presumably your logm(A) have values much less than 1. You should really be comparing to eps(logm(A)) or maybe to eps(norm(logm(A)).
  2 Commenti
Zoltán Csáti
Zoltán Csáti il 29 Ott 2013
For my case:
logm(A) = -0.1438 0.5493 0
0.5493 -0.1438 0
0 0 0
These entries are not much less than 0 (in absolute value).
Matt J
Matt J il 29 Ott 2013
Modificato: Matt J il 29 Ott 2013
They're clearly small enough:
>> logmA=[ -0.1438 0.5493 0
0.5493 -0.1438 0
0 0 0];
>> eps(norm(logmA,2))
ans =
1.1102e-16
Looks like your calculation is pretty accurate!

Accedi per commentare.

Più risposte (0)

Prodotti

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by