How to program natural log in matlab
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I'm trying to write a Matlab function that will compute the natural log for any input within limits I have set. I'm considering the Taylor series expansion of f(x)=ln(1+x). Where the series is only converges for -1< x <=1. I'm also using E<10^-6 for convergence criterion. I wrote a program but its not running correctly. Any suggestions? Thank you in an advance for your help!
2 Commenti
Risposte (1)
John D'Errico
il 26 Nov 2013
Modificato: John D'Errico
il 26 Nov 2013
You can learn a vast amount by reading what I did in my HPF toolbox, although there is no need for you to write a complete class to do the work. HPF uses series approximations, along with various range reduction schemes for all of the special functions I wrote. There I show how I compute logs that are accurate to many thousands of digits if desired.
Section 4.2 of HPFMod2.pdf describes the tricks I used in computation of the natural log. Find HPF here:
As an example...
log(hpf(2,100))
ans =
0.6931471805599453094172321214581765680755001343602552541206800094933936219696947156058633269964186875
And for comparison to the symbolic toolbox:
vpa(log(sym(2)),100)
ans =
0.6931471805599453094172321214581765680755001343602552541206800094933936219696947156058633269964186875
Some points to note:
You don't need to use a series to compute the log for all values of x, but only a restricted range, since you have various identities. For example, here is a simple one.
log(e*x) = log(e) + log(x) = 1 + log(x)
log(x/e) = -log(e) + log(x) = -1 + log(x)
So, if x is greater than sqrt(e), you can always divide by e repeatedly until x is not. Likewise, if x is less than 1/sqrt(e), you can always multiply by e until it is in the interval [1/sqrt(e),sqrt(e)].
So you might use a while loop to deal with x outside of the interval of interest.
exp(1/2)
ans =
1.64872127070013
exp(-1/2)
ans =
0.606530659712633
This is a reasonably small range to deal with. Once you get x into that interval, then a series approximation will do reasonably well. You can do a bit more of course, as I show in the pdf.
0 Commenti
Vedere anche
Categorie
Scopri di più su Exponents and Logarithms in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!