How to get only linearly independent rows in a matrix or to remove linear dependency b/w rows in a matrix?

131 visualizzazioni (ultimi 30 giorni)
Say I have a matrix A = [1,1,1;1,2,3;4,4,4]; and I want only the linearly independent rows in my new matrix. The answer might be A_new = [1,1,1;1,2,3] or A_new = [1,2,3;4,4,4]
Since I have a very large matrix so I need to decompose the matrix into smaller linearly independent full rank matrix. Can someone please help?
  2 Commenti
sixwwwwww
sixwwwwww il 5 Dic 2013
what is meaning of linear independent in your case? A_new is linearly independent and A is not linearly dependent?
Puneet
Puneet il 5 Dic 2013
Linear dependence in the matrix makes it singular. In this case A, row 3 can be obtained 4*row 1. This means that the third row is redundant. Making the matrix singular(det(A)=0).I expect if there is some built in function in matlab that could give me A_new or someone has already written a code for such problem.

Accedi per commentare.

Risposta accettata

Matt J
Matt J il 5 Dic 2013
This extracts linearly independent columns, but you can just pre-transpose the matrix to effectively work on the rows.
function [Xsub,idx]=licols(X,tol)
%Extract a linearly independent set of columns of a given matrix X
%
% [Xsub,idx]=licols(X)
%
%in:
%
% X: The given input matrix
% tol: A rank estimation tolerance. Default=1e-10
%
%out:
%
% Xsub: The extracted columns of X
% idx: The indices (into X) of the extracted columns
if ~nnz(X) %X has no non-zeros and hence no independent columns
Xsub=[]; idx=[];
return
end
if nargin<2, tol=1e-10; end
[Q, R, E] = qr(X,0);
if ~isvector(R)
diagr = abs(diag(R));
else
diagr = R(1);
end
%Rank estimation
r = find(diagr >= tol*diagr(1), 1, 'last'); %rank estimation
idx=sort(E(1:r));
Xsub=X(:,idx);
  21 Commenti
Matt J
Matt J il 21 Set 2020
Modificato: Matt J il 21 Set 2020
MICHAEL MONT-ETON's comment moved here.
Matt J.:
Thanks for the code. I'd like to provide a reference for your work in my upcoming paper that would benefit from removal of dependent equations in the system I am studying.
Please indicate how you would like that to read.
Very Respectfully,
Mike Mont-Eton

Accedi per commentare.

Più risposte (4)

Wayne King
Wayne King il 5 Dic 2013
Modificato: Wayne King il 5 Dic 2013
A = [1,1,1;1,2,3;4,4,4];
[R,basiccol] = rref(A);
B = A(:,basiccol);
The columns of B are a basis for the range of A. B has the same rank as A.
  3 Commenti
Matt J
Matt J il 5 Dic 2013
Modificato: Matt J il 5 Dic 2013
I have been warned not to trust RREF for this kind of thing. That was my reason for coding the QR-based method in my Answer.

Accedi per commentare.


Lem
Lem il 27 Nov 2015
Hello,
I want to ask: instead of rank estimation, can we not just use the minpoly function, get the largest non-zero degree (r) from there and use r instead?
  1 Commento
Matt J
Matt J il 27 Nov 2015
Modificato: Matt J il 27 Nov 2015
There's no way to avoid estimating rank. minpoly sounds like an alternative way to do so, but requires the Symbolic Toolbox. It also appears to be a lot slower than a QR approach, even for rather small matrices:
>> A=rand(10);
>> tic;minpoly(A);toc
Elapsed time is 0.875673 seconds.
>> tic;qr(A);toc
Elapsed time is 0.000063 seconds.

Accedi per commentare.


Dave Stanley
Dave Stanley il 24 Ago 2017
I wrote a few functions to handle this. They do basically the same as Matt J's function above, with some added bells and whistles. (Namely, it includes an option for ignoring columns that are shifted by a constant; for example, if col2 = 10 - col1. It also returns indices to clusters of originally linearly dependent columns ). Again, you'd have to add a transpose to operate on rows instead of columns. Hope it's useful to someone.
On your example above:
A = [1,1,1;1,2,3;4,4,4]'
[Abasis, Abasisi, Asub]= getLinearIndependent(A)
Result:
Input:
A =
1 1 4
1 2 4
1 3 4
Output:
Abasis =
1 1
1 2
1 3
Abasisi =
1 2
Asub =
1×2 cell array
[1,3] [2]
Here, Asub{1} contains the indices of all columns linearly dependent with the first basis vector, and Asub{2} contains that for the second.

Dominique Joubert
Dominique Joubert il 9 Nov 2018
svd , and looking at the number of non-zero singular values
  8 Commenti
Bruno Luong
Bruno Luong il 9 Nov 2018
Modificato: Bruno Luong il 9 Nov 2018
"If for example the values in that column were [0.4 0 0.2]"
But it's not the case. So you can't conclude anything in the above example.
If you want to convince, write down your algorithm to detect independent columns using SVD, then we can speak.
Puneet
Puneet il 9 Nov 2018
The algorithm written above by Matt works pretty good. I have tested that algorithm for quite a large matrix (1M+x1M+). However, I tried the svd route too when I posted this question, as said above I was not able to get results I am looking for.
Thanks, Puneet

Accedi per commentare.

Categorie

Scopri di più su Linear Algebra in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by