How to get only linearly independent rows in a matrix or to remove linear dependency b/w rows in a matrix?
131 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Say I have a matrix A = [1,1,1;1,2,3;4,4,4]; and I want only the linearly independent rows in my new matrix. The answer might be A_new = [1,1,1;1,2,3] or A_new = [1,2,3;4,4,4]
Since I have a very large matrix so I need to decompose the matrix into smaller linearly independent full rank matrix. Can someone please help?
2 Commenti
sixwwwwww
il 5 Dic 2013
what is meaning of linear independent in your case? A_new is linearly independent and A is not linearly dependent?
Risposta accettata
Matt J
il 5 Dic 2013
This extracts linearly independent columns, but you can just pre-transpose the matrix to effectively work on the rows.
function [Xsub,idx]=licols(X,tol)
%Extract a linearly independent set of columns of a given matrix X
%
% [Xsub,idx]=licols(X)
%
%in:
%
% X: The given input matrix
% tol: A rank estimation tolerance. Default=1e-10
%
%out:
%
% Xsub: The extracted columns of X
% idx: The indices (into X) of the extracted columns
if ~nnz(X) %X has no non-zeros and hence no independent columns
Xsub=[]; idx=[];
return
end
if nargin<2, tol=1e-10; end
[Q, R, E] = qr(X,0);
if ~isvector(R)
diagr = abs(diag(R));
else
diagr = R(1);
end
%Rank estimation
r = find(diagr >= tol*diagr(1), 1, 'last'); %rank estimation
idx=sort(E(1:r));
Xsub=X(:,idx);
21 Commenti
Matt J
il 21 Set 2020
Modificato: Matt J
il 21 Set 2020
Matt J.:
Thanks for the code. I'd like to provide a reference for your work in my upcoming paper that would benefit from removal of dependent equations in the system I am studying.
Please indicate how you would like that to read.
Very Respectfully,
Mike Mont-Eton
Matt J
il 21 Set 2020
@Michael,
You can just reference the File Exchange link.
The algorithm is not really mine. I just posted it as a FAQ.
Più risposte (4)
Wayne King
il 5 Dic 2013
Modificato: Wayne King
il 5 Dic 2013
A = [1,1,1;1,2,3;4,4,4];
[R,basiccol] = rref(A);
B = A(:,basiccol);
The columns of B are a basis for the range of A. B has the same rank as A.
3 Commenti
Matt J
il 5 Dic 2013
Modificato: Matt J
il 5 Dic 2013
I have been warned not to trust RREF for this kind of thing. That was my reason for coding the QR-based method in my Answer.
Wayne King
il 5 Dic 2013
As Matt advises below just transpose to work on rows.
B = A';
[R,basiccol] = rref(B);
B = B(:,basiccol)'
Lem
il 27 Nov 2015
Hello,
I want to ask: instead of rank estimation, can we not just use the minpoly function, get the largest non-zero degree (r) from there and use r instead?
1 Commento
Matt J
il 27 Nov 2015
Modificato: Matt J
il 27 Nov 2015
There's no way to avoid estimating rank. minpoly sounds like an alternative way to do so, but requires the Symbolic Toolbox. It also appears to be a lot slower than a QR approach, even for rather small matrices:
>> A=rand(10);
>> tic;minpoly(A);toc
Elapsed time is 0.875673 seconds.
>> tic;qr(A);toc
Elapsed time is 0.000063 seconds.
Dave Stanley
il 24 Ago 2017
I wrote a few functions to handle this. They do basically the same as Matt J's function above, with some added bells and whistles. (Namely, it includes an option for ignoring columns that are shifted by a constant; for example, if col2 = 10 - col1. It also returns indices to clusters of originally linearly dependent columns ). Again, you'd have to add a transpose to operate on rows instead of columns. Hope it's useful to someone.
For numerical matrices: https://www.mathworks.com/matlabcentral/fileexchange/64221-getlinearindependent-a-ignore-constant-shift-
For cell arrays: https://www.mathworks.com/matlabcentral/fileexchange/64222-getlinearindependentcell-a-ignore-constant-shift-
On your example above:
A = [1,1,1;1,2,3;4,4,4]'
[Abasis, Abasisi, Asub]= getLinearIndependent(A)
Result:
Input:
A =
1 1 4
1 2 4
1 3 4
Output:
Abasis =
1 1
1 2
1 3
Abasisi =
1 2
Asub =
1×2 cell array
[1,3] [2]
Here, Asub{1} contains the indices of all columns linearly dependent with the first basis vector, and Asub{2} contains that for the second.
0 Commenti
Dominique Joubert
il 9 Nov 2018
svd , and looking at the number of non-zero singular values
8 Commenti
Bruno Luong
il 9 Nov 2018
Modificato: Bruno Luong
il 9 Nov 2018
"If for example the values in that column were [0.4 0 0.2]"
But it's not the case. So you can't conclude anything in the above example.
If you want to convince, write down your algorithm to detect independent columns using SVD, then we can speak.
Vedere anche
Categorie
Scopri di più su Linear Algebra in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!