about the amplitude of spectrum by fft
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Ray Lee
il 17 Lug 2014
Commentato: Honglei Chen
il 23 Lug 2014
As for cos(2*pi*t), the peaks locates at -1 and 1 Hz with a value of 0.5. It's correct.
t = 0:0.1:10;
x = cos(2*pi*t);
y = fft(x)/length(x);
real(fftshift(y))
As for sin(2*pi*t), the peak locations are correct but the polarity is reversed from the theoretical predition.
t = 0:0.1:10;
x = sin(2*pi*t);
y = fft(x)/length(x);
imag(fftshift(y))
We know that the fourier transform of exp(-pi*t^2) is exp(-pi*f^2). Thus, the peak amplitude is expected to be 1.
t = -10:0.2:10;
t = ifftshift(t);
x = exp(-pi*t.^2);
y = fft(x)/length(x);
real(fftshift(y))
but the peak of the amplitude spectrum by fft is 0.05, not 1 as predicted by the analytic solution.
0 Commenti
Risposta accettata
Honglei Chen
il 17 Lug 2014
Modificato: Honglei Chen
il 17 Lug 2014
why do you say for sin(2*pi*t) the polarity is reversed? The theoretical equation has 1/(2*1i) as the scaling factor, so the result is correct.
As to the Gaussian signal, the relation you quoted is for continuous Fourier transform, not for FFT. Since you don't sample every point on the curve, your frequency domain sample does not end up at 1. The value at f=0 is simply sum(x)/length(x), which is approximately 0.05, matching what you get.
Another way to look at it is that the point in your frequency domain result represents the integration of a small frequency bin, and the width of each bin is fs/N where fs is the sampling rate and N is the number points. In your example, fs is 5 and N is length(x). Therefore, the value is 1*5/length(x).
2 Commenti
Honglei Chen
il 23 Lug 2014
Because they are single frequency so you only get energy at that very point, there is no energy spread in the bin
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Spectral Measurements in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!