insfilterMARG parameter tuning - Kalman filter
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Pere Garau Burguera
il 24 Ago 2021
Commentato: Pere Garau Burguera
il 25 Ago 2021
Hello,
I am trying to do sensor fusion for pose estimation using the insfilterMARG filter. I am somewhat following the structure of this example, in which I have an IMU object to simulate the sensor values (accelerometer, gyroscope and magnetometer). For the GPS signal I directly use the values in meters (plus some added noise) from the trajectory, which comes from a waypointtrajectory (along with the orientation).
The Kalman loop looks something like this:
ori_est = quaternion();
pos_est = zeros(n,3);
stateIdx = stateinfo(fuse);
for ii=1:n
fuse.predict(acc(ii,:),avel(ii,:));
fuse.fusemag(mag(ii,:),Rmag);
correct(fuse, stateIdx.Position, pos(ii,:), Rpos);
[pos_est(ii,:),ori_est(ii,:)] = pose(fuse);
end
The performance of this filter is rather good for ideal sensors (no noise) and after manually tweaking the process noise values after trying different values and evaluating the results. Using the tune function has resulted in no success so far (even for simpler models), so manually finding the values has been the only option. However when simulating a realistic environment where the sensors are read with noise, these process noise values become even more important, and it is hard to manually find the optimal combination.
sensor_data = table(acc,avel,mag,pos,NaN(size(acc)),'VariableNames',{'Accelerometer','Gyroscope','Magnetometer',...
'GPSPosition','GPSVelocity'}); % Sensor values, velocity not available
g_truth = table(ori_true,pos_true,vel_true,repmat(magfieldNED,n,1),zeros(n,3),zeros(n,3),zeros(n,3),...
'VariableNames',{'Orientation','Position','Velocity','GeomagneticFieldVector',...
'DeltaAngleBias','DeltaVelocityBias','MagnetometerBias'}); % true values from the waypoint trajectory, try with no bias first
measurenoise = tunernoise('insfilterMARG');
tune(fuse,measurenoise,sensor_data,g_truth);
The tune function is not converging (I tried adding more iterations and changing the step forward and backward values with a config object. The output of the tune function is as follows:
After it ends the orientation estimation is unusable, even worse than manually finding close to optimal values, which are still not good enough.
Is this the expected behavior? Or is there any error in my understanding/code? I can post the rest of the code if need be.
Thanks in advance.
0 Commenti
Risposta accettata
Brian Fanous
il 24 Ago 2021
It's hard to tell what's going on with only these code snippets. Can you post more?
Note that the tune() function will not find the initial state and state covariance for you. It will find the measurement noise and process noises. But you will have to give the filter a good starting initial state (the State property) and state covariance (StateCovariance property) before calling the tune() function.
Più risposte (0)
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!