Except for the first iteration others show NaN

2 visualizzazioni (ultimi 30 giorni)
When I start training my CNN it shows me training details only on first iteration, and I've already check the training data size and the validation data size is 100000 and 20000, I was wondering is it normal process or not. Thank you.
  2 Commenti
Chunru
Chunru il 1 Set 2021
Check if the train data contains any nan.
KAI-YANG WANG
KAI-YANG WANG il 1 Set 2021
Thank you for the answer, Ive checked there's no nan in my training data.

Accedi per commentare.

Risposta accettata

KSSV
KSSV il 1 Set 2021
Try reducing the initial learning rate.
options = trainingOptions('adam') ;
options.InitialLearnRate
ans = 1.0000e-03
options.InitialLearnRate = 10^-4 ;
options.InitialLearnRate
ans = 1.0000e-04
If the above works well and good. If not show us your full code and data.
  2 Commenti
KAI-YANG WANG
KAI-YANG WANG il 1 Set 2021
Thank you so much and I've try to reduce the initial learning rate, but still the same. My code is attached below.
location='\\ikb\home\25\1939725\Desktop\cost2100-master mimo\matlab\CNN\csitrain\Htrain'
imds = imageDatastore(location,'FileExtensions','.mat','IncludeSubfolders',1, ...
'LabelSource','foldernames');
imdsx=imageDatastore(location,'FileExtensions','.mat','IncludeSubfolders',1, ...
'LabelSource','foldernames');
imdsy=imageDatastore(location,'FileExtensions','.mat','IncludeSubfolders',1, ...
'LabelSource','foldernames');
countEachLabel(imds)
trainingDS = imds;
trainingDS.Labels = categorical(trainingDS.Labels);
trainingDS.ReadFcn=@readFcn1;
countEachLabel(imdsx)
trainingDS2 = imdsx;
trainingDS2.Labels = categorical(trainingDS.Labels);
trainingDS2.ReadFcn=@readFcn2;
countEachLabel(imdsy)
trainingDS2 = imdsy;
trainingDS2.Labels = categorical(trainingDS.Labels);
trainingDS2.ReadFcn=@readFcn3;
dsTrain = transform(imds,@commonPreprocessing);
dsVal = transform(imdsx,@commonPreprocessing);
dstest = transform(imdsy,@commonPreprocessing);
trainData=combine(dsTrain,dsTrain);
valData=combine(dsVal,dsVal);
%Designed concolutional network
maxEpochs = 200;
options = trainingOptions('sgdm', ...
'ValidationData', valData,...
'InitialLearnRate',0.0001,...
'ExecutionEnvironment','gpu', ...
'LearnRateSchedule','piecewise', ...
'MaxEpochs',maxEpochs, ...
'MiniBatchSize',200, ...
'Plots','training-progress')
doTraining = true;
if doTraining
modelDateTime = string(datetime('now','Format',"yyyy-MM-dd-HH-mm-ss"));
net =trainNetwork(trainData, lgraph, options);
save(strcat("trainedCNN-",modelDateTime,"-Epoch-",num2str(maxEpochs),".mat"),'net');
else
load('traindata.mat');
end
YPredicted = predict(net,dstest);
function dataOut = commonPreprocessing(data)
dataOut = cell(size(data));
for col = 1:size(data,2)
for idx = 1:size(data,1)
temp = single(data{idx,col});
temp = reshape(temp,[32,32,2]);
temp = rescale(temp);
dataOut{idx,col} = temp;
end
end
end
KAI-YANG WANG
KAI-YANG WANG il 2 Set 2021
I've tried a further lower learning rate and it does help, Thank you!

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Deep Learning Toolbox in Help Center e File Exchange

Prodotti


Release

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by