How to plot streamline, streakline and pathlines without using 'streamline streamline, odexx or similar functions in Matlab'
12 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Can someone help me correct my code for tracking centre of vortex and for plotting streamlines, streaklines and pathlines by creating the code and not using Matlab 'streamline' function.
close all;
clear;
clc;
%3(a)
time_steps = 0.01;
t=0:time_steps:100;
total_time_points=length(t);
load('particle_positions.mat')
figure
plot(xp,yp,'k.')
xlabel('X');
ylabel('Y');
for i=1:length(xp)
[x_val(i),y_val(i)]=Euler_scheme(xp(i),yp(i),total_time_points,time_steps);
end
figure
plot(x_val,y_val,'k.')
xlabel('X');
ylabel('Y');
title('Particle positions')
hold on;
% Computing the center of vortex
for i=1:length(xp)/10 -1
x_center(i) = sum(x_val(i*10:i*10+10))/10;
y_center(i) = sum(y_val(i*10:i*10+10))/10;
end
plot(x_center,y_center,'r*')
xlabel('X');
ylabel('Y');
figure
plot(x_center,y_center,'r*')
xlabel('X');
ylabel('Y');
title('Center of Vortex');
function [x_last,y_last]=Euler_scheme(x,y,l_t,h)
for j=1:l_t-1
x(j+1)=x(j)+(h*f(x(j),y(j)));
y(j+1)=y(j)+(h*g(x(j),y(j)));
end
x_last=x(end);
y_last=y(end);
end
function dxdt=f(x,y)
gamma_val = [-2 2 -2 2];
delta = 0.5;
x0 = [-1 1 -1 1];
y0 = [10 10 -10 -10];
dxdt = 0;
for ii=1:size(x0,2)
dxdt = dxdt - gamma_val(ii)/(2*pi)*((y-y0(1,ii))/((x-x0(1,ii))^2+(y-y0(1,ii))^2+delta^2));
end
end
function dydt=g(x,y)
gamma_val = [-2 2 -2 2];
delta = 0.5;
x0 = [-1 1 -1 1];
y0 = [10 10 -10 -10];
dydt = 0;
for ii=1:size(x0,2)
dydt = dydt + gamma_val(ii)/(2*pi)*((x-x0(1,ii))/((x-x0(1,ii))^2+(y-y0(1,ii))^2+delta^2));
end
end
0 Commenti
Risposte (1)
darova
il 19 Set 2021
What about ode45? Streamline is just a trajectory, if you have vector field you can find a solution
[x,y,z] = peaks(20);
[u,v] = gradient(z);
fx = scatteredInterpolant(x(:),y(:),u(:)); % function of X velocity
fy = scatteredInterpolant(x(:),y(:),v(:)); % function of Y velocity
F = @(t,u) [fx(u(1),u(2)); fy(u(1),u(2))]; % ode45 function
quiver(x,y,u,v)
t = 0:.2:2*pi;
[x0,y0] = pol2cart(t,0.5);
for i = 1:numel(x0)
[t,u1] = ode45(F,[0 1],[x0(i)-1.5 y0(i)+0.3]); % find solution for each initial position
line(u1(:,1),u1(:,2),'color','r')
end
0 Commenti
Vedere anche
Categorie
Scopri di più su Convert Image Type in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!