How I can use the eig function for nonsymmetric matrices?
    7 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
    Traian Preda
      
 il 7 Ago 2014
  
    
    
    
    
    Modificato: Chris Turnes
    
 il 7 Ago 2014
            Hi,
I have a non symmetric matrix and I try to figure out which option of the eig I should use? Thank you
0 Commenti
Risposta accettata
  Chris Turnes
    
 il 7 Ago 2014
        The eig function does not require any additional options for nonsymmetric matrices. There is an example of this in the documentation for eig:
>> A = gallery('circul',3)
A =
       1     2     3
       3     1     2
       2     3     1
>> [V,D] = eig(A);
>> V\A*V % verify that V diagonalizes A
ans =
     6.0000 + 0.0000i   0.0000 - 0.0000i  -0.0000 + 0.0000i
    -0.0000 - 0.0000i  -1.5000 + 0.8660i  -0.0000 - 0.0000i
    -0.0000 + 0.0000i  -0.0000 + 0.0000i  -1.5000 - 0.8660i
2 Commenti
  Chris Turnes
    
 il 7 Ago 2014
				
      Modificato: Chris Turnes
    
 il 7 Ago 2014
  
			How are you trying to rebuild the matrix from the eigendecomposition? Note that since the matrix is not symmetric, it is not true that V^{-1} = V^H. Therefore, to reconstruct the matrix, you should instead try
>> Ar = V*D/V;  % Ar = V*D*V^{-1}
which is the proper eigendecomposition. When I try this with the matrix you posted, I get:
>> Ar = V*D/V; % Ar = V*D*V^{-1}
>> norm(a - Ar)
ans =
   2.4546e-15
Più risposte (0)
Vedere anche
Categorie
				Scopri di più su Linear Algebra in Help Center e File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

