Finding Optimal Number Of Clusters for Kmeans
45 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I want to find the number of clusters for my data for which the correlation is above .9. I know you can use a sum of squared error (SSE) scree plot but I am not sure how you create one in Matlab. Also, are there any other methods?
0 Commenti
Risposte (2)
Taro Ichimura
il 1 Giu 2016
Hello,
you have 2 way to do this in MatLab, use the evalclusters() and silhouette() to find an optimal k, you can also use the elbow method (i think you can find code in matlab community) check matlab documentation for examples, and below
% example
load fisheriris
clust = zeros(size(meas,1),6);
for i=1:6
clust(:,i) = kmeans(meas,i,'emptyaction','singleton',...
'replicate',5);
end
va = evalclusters(meas,clust,'CalinskiHarabasz')
Pamudu Ranasinghe
il 19 Giu 2022
Refer "evalclusters" function
eva = evalclusters(X,'kmeans','CalinskiHarabasz','KList',1:6);
Optimal_K = eva.OptimalK;
1 Commento
Walter Roberson
il 19 Giu 2022
Modificato: Walter Roberson
il 23 Giu 2022
And see https://www.mathworks.com/matlabcentral/answers/52322-how-to-determine-number-of-clusters-automatically-for-each-image-to-be-used-in-k-means-algorithm#comment_2222525 for why evalclusters is mostly arbitrary with not so much real use.
Real mathematics says that every unique point should be its own cluster.
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!